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Preface 

This book is the result of the research carried on by the author and some 
of his colleagues from 1995. Fork algebras, the subject of this book, had 
their origin in the early 90s as part of a formalism capable of dealing with 
the process of program specification and development. The contents of the 
book fall in with what are called Relational Methods in Computer Science. 

As usually happens, applied research led to problems of a theoretical 
nature which were undertaken by the author and are the core of this book. 
Problems such as finite axiomatizability or axioms independence (Sections 
4.1 and 4.2) naturally arose when investigating the relational semantics of 
the fork calculus. 

Relational proof systems for various logics (classical, modal and multi­
modal) (Sections 5.2, 6.5, 6.7) besides providing relational deductive calculi 
for these logics, allow us to assess the expressive power of the fork calculus 
and establish the foundations for a relational formalism for system specifi­
cation. 

Finally, in Section 7.5 we present the foundations for a relational cal­
culus for program specification and derivation that allow us to specify and 
calculate program design strategies. 

The author wishes to thank Armando Haeberer and Roger Maddux, 
who were his Ph.D. advisors and co-authors of several results in this book. 
Gabriel Baum has to be thanked not only as a colleague and co-author of 
several papers, but also as a constant source of friendship and advice. Tom 
Maibaum suggested that these results could be put in the form of a book. 
The members of the RelMiCS (Relational Methods in Computer Science) 
group are thanked for their always useful comments and criticisms. Finally, 

vii 
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the author wishes to thank the Department of Informatics, PUC-RIO; LI-
FIA, National University of La Plata; and the Department of Computer 
Science, School of Sciences, University of Buenos Aires, for providing an 
always stimulating environment. 
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Chapter 1 

Introduction and Motivations 

1.1 Software Specification, Binary Relations and Fork 

Fork algebras —the subject of this book— have their origin as the founda­
tion of a framework for software specification, verification and derivation. 
In our view, specification languages —as modern graphical notations like 
UML [G. Booch et al. (1998)]— must allow for a modular description of 
the different aspects that comprise a system. These aspects include struc­
tural properties, dynamic properties, temporal properties, etc. Different 
formalisms allow us to specify each one of these aspects, namely, 

- first-order classical logic for structural properties 
- propositional and first-order dynamic logic for dynamic properties, 
- different modal logics for temporal properties. 

Many of the previously mentioned formalisms have complete deductive 
systems. Nevertheless, reasoning across formalisms may be difficult if not 
impossible. A possible solution in order to solve this problem consists on 
finding an amalgamating formalism satisfying at least the following: 

- the formalism must be expressive enough to interpret the specifi­
cation formalisms, 

- the formalism must have very simple semantics, understandable by 
non mathematicians, 

- the formalism must have a complete and simple deductive system. 

In this book we propose the formalism called fork algebras to this end. 
The formalism is presented in the form of an equational calculus, which 

l 



2 Introduction and Motivations 

reduces reasoning to substitution of equals by equals. The calculus is com­
plete with respect to a very simple semantics in terms of algebras of binary 
relations. 

Algebras of binary relations, such as the ones to be used in this book, 
have as domain a set of binary relations on some set (let us say A). Among 
the operations that can be defined on such domain, consider the following: 

- the empty binary relation 0, 
- complement of a binary relation x with respect to a largest relation 

E, i.e., x —as the complement of a; is denoted— is defined as E\x, 
- union of binary relations —denoted by U—, and 
- intersection of binary relations —denoted by ("1. 

Notice that the previous operations are defined on arbitrary sets, inde­
pendently of whether these are binary relations or not. Actually, a set of 
binary relations closed under these operations is an example of set Boolean 
algebra. However, there are other operations that operate naturally on bi­
nary relations but are not defined on arbitrary sets. Among these we can 
mention: 

- the identity binary relation on A —denoted by Id—, 
- composition of binary relations —denoted by o—, and 
- transposition of the pairs of a binary relation —denoted by "". 

Unfortunately, a class of algebras containing these operations cannot be 
axiomatized by a finite number of equations [D. Monk (1964)]. In order to 
overcome this important drawback, we add an extra binary operation on 
relations called fork. Addition of fork has two main consequences. First, the 
class of algebras obtained can be axiomatized by a finite (and small) number 
of equations. Second, addition of fork induces a structure on the domain 
on top of which relations are built, i.e., rather than being the arbitrary set 
A, it is a set A* closed under a binary function *. The definition of the 
operation fork (denoted by V) is then given by: 

# V £ = {{x,y*z) : xRy A xSz} . 

The definition of V is depicted in Fig. 1.1. Whenever x and y are related 
via R, and x and z are related via S, x and y * z are related via -RV5. 
Notice that the definition strongly depends on the function *. Actually, the 
definition of fork evolved around the definition of the function *. From 1990 
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Fig. 1.1 Fork of binary relations R and 5. 

(when the first class of fork algebras was introduced) until now, different 
alternatives were explored with the aim of finding a framework which would 
satisfy our needs. In the definition of the first class of fork algebras [P. 
Veloso et al. (1991)], function * produced true set theoretical pairs, i.e., 
when applied to values a and b, *(a,b) returned the pair (a, b). Mikulas, 
Sain, Simon and Nemeti showed in [S. Mikulas et al. (1992); I. Sain et 
al. (1995)] that this class of fork algebras was not finitely axiomatizable. 
This was done by proving that a sufficiently complex theory of natural 
numbers can be interpreted in the equational theory of these fork algebras, 
and thus leads to a non recursively enumerable equational theory. Other 
classes of fork algebras were defined, in which * was binary tree formation 
or even concatenation of sequences, but these were shown to be non finitely 
axiomatizable too. It was in [M. Prias et al. (1995)a] where the class of fork 
algebras to be used in this book came up. The only requirement placed on 
function * was that it had to be injective. This was enough to prove in 
[M. Prias et al. (1997)b] that the newly defined class of fork algebras was 
indeed finitely axiomatizable by a set of equations. 
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Chapter 2 

Algebras of Binary Relations and 
Relation Algebras 

2.1 History and Definitions 

In this section the classes of algebras of binary relations and their abstract 
counterpart, the class of relation algebras, will be defined. The study of 
algebras of binary relations began with the works of Charles Sanders Peirce 
[Ch. Peirce (1933)] and Augustus De Morgan [A. De Morgan (1966)] and 
was later continued by Ernst Schroder [E. Schroder (1895)] when looking for 
an algebraic counterpart of first-order reasoning, much the same as George 
Boole developed the so-called Boolean algebras as an algebraic counterpart 
to propositional reasoning. 

Throughout this section and the rest of the book it will be assumed 
that the reader has a nodding acquaintance with elementary concepts of 
set-theory and first-order logic. As a reference text in both areas the reader 
is referred to [J. Barwise (1977)]. Given a binary relation X in a set A, and 
a, b G A, we will denote the fact that a and b are related via the relation X 
by (a, b) e X or aXb, indistinctly. 

Definition 2.1 Let E be a binary relation on a set A, and let R be a set 
of binary relations satisfying: 

(1) [jRCE, 
(2) Id (the identity relation on the set A), 0 (the empty binary relation) 

and E belong to R, 
(3) R is closed under set union (U), intersection (n) and complement 

relative to E (~), 
(4) R is closed under relational composition (denoted by o) and con-

5 



6 Algebras of Binary Relations and Relation Algebras 

verse (denoted by ). These two operations are defined by 

XoY = {{a,b) :3c{aXc A cYb)} 

X={(a,b):bXa} . 

Then, the structure (R, U,n,~,0,.E, o, ld^ ) is called an algebra of 
binary relations. The class of algebras of binary relations will be denoted 
by ABR. 

Definition 2.2 Notice that, according to Def. 2.1, each algebra of binary 
relations 21 contains a set A on which the binary relations are defined. This 
set will be called the base of 21, and will be denoted by 5<a-

Definition 2.3 An algebra of binary relations is full if its universe is of 
the form V (U x U) for some set U, and is square if its largest relation is 
of the form U xU. 

It follows immediately from Def. 2.3 that every full algebra of binary 
relations is square. Also, a square algebra of binary relations, whose largest 
relation is U x U, is a subalgebra of the full algebra of binary relations with 
universe V (U x U). 

The following theorem, besides being useful in further sections, also 
gives a clear understanding of the structure of algebras of binary relations. 
Given algebras 21 and 05, 21 -< 05 means that 21 is embeddable in 05, i.e., 
21 is isomorphic to a subalgebra of 05. Also, given an index set / , YliGl W-i 
denotes the direct product of the algebras (2li)i6/. 

Theorem 2.1 Given an algebra of binary relations 21, there exist an index 
set I and full algebras of binary relations (2lj)jej such that 

i&I 

Proof Let E be the largest relation in 21. Since Id C E, £ C E and 
EoE C E, E is an equivalence relation. Thus, there exists an index 
set / such that E = \Ji€lEi, with Ei = Ui x Ui. For i £ I, let 21* be 
the algebra of binary relations with largest relation Ei and universe Ai = 
{x G Ei : x e A}. Let h : A —> f ] i e /M D e defined by: TTi(h(a)) = a n E,. 
It is an easy exercise to show that h is a one-to-one homomorphism. • 
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In 1941 Alfred Tarski [A. Tarski (1941)] introduced the elementary the­
ory of binary relations (ETBR) as a logical formalization of the algebras 
of binary relations. The elementary theory of binary relations is a for­
mal theory where two different sorts of variables are present. The sot 
IndVar = {ui,i>2,^3, • • • } contains the so-called individual variables, and 
the set RelVar = {R,S,T,...} contains the so-called relation variables. 
If we add the relation constants 0, 1 and 1' to the relation variables and 
close this set under the unary operators ~ and ", and the binary operators 
+ , • and ;, we obtain the set of relation designations. Examples of such 
objects are, for instance, R (to be read 'the converse of i?') and R;S (to 
be read 'the relative product of R and S"). Atomic formulas are expres­
sions of the form xRy (where x, y are arbitrary individual variables and 
R is an arbitrary relation designation) or R — S (with R and S arbitrary 
relation designations). Prom the atomic formulas, we obtain compound 
formulas as usual, by closing the atomic formulas under the unary logical 
constants -i, Vx, \/y,..., 3a;, 3y ... (x, y,... individual variables) and the 
binary logical constants V, A, =>• and •$=>. We will choose a standard set 
of logical axioms and inference rules for our theory (see e.g. [H. Enderton 
(1972), Ch. 2.4]). As the axioms that explain the meaning of the relational 
symbols 0, 1, 1', ~, v, + , • and ;, we single out the following sentences in 
which x, y, z are arbitrary individual variables and R, S, T are arbitrary 
relation designations. 

VzVy (x 1 y) (unit definition) 

VxVy (-i xOy) (zero definition) 

Vx (x V x) (reflexivity of the identity) 

VxVj/V-z((xRy AyVz) =J> xRz) (identity is a congruence) 

VWy (xRy & -> xRy) (complement definition) 

ViVy [xRy & yRx) (converse definition) 

VxVy(xR+Sy <£> xRy\/xSy) (join definition) 

VxVy(xR-Sy «=> xRyAxSy) (meet definition) 

VxVy(xR;Sy <=> 3z(xRz A zSy)) (relative product definition) 

R = S <=> VzVj/ (xRy & xSy) (equality definition) 
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Prom the elementary theory of binary relations, Tarski [A. Tarski (1941)] 
introduced the calculus of relations (CR). The calculus of relations is de­
fined as a restriction of the elementary theory of binary relations. Formulas 
of the calculus of relations are those formulas of the elementary theory of 
binary relations where no variables over individuals occur. As axioms of 
the calculus of relations, Tarski chose a subset of formulas without vari­
ables over individuals valid in the elementary theory of binary relations. 
The formulas Tarski chose as axioms are, besides a set of axioms for the 
logical connectives, the following: 

(1) (R = SAR = T) => S = T 
(2) R = S =• (R+T = S+T A R-T = S-T) 
(3) R+S = S+R A RS = SR 
(4) (R+S)-T = (R-T) + (S-T) A (R-S) +T = (R+T) • (S+T) 
(5) R+0 = R A i M = i? 
(6) R+R = l A RR = 0 
(7 )T = 0 

(8) h = R 
(9) (R;Sy = S;R 

(10) (R;S);T = R;(S;T) 
(11) R;V = i? 
(12) (R;S)-T = 0 => (5 ;T) -A = 0 
(13) R;l = l V l;fl = l 

Axioms (l)-(7) are an axiomatization for Boolean algebras, axioms (8)-
(12) axiomatize the relative operators. 

As is customary in universal algebra, an algebra 21 with universe A is 
simple if: 

- \A\ > 2, 
- 21 has exactly two homomorphic images. 

It follows from [A. Tarski (1941), p. 85] that formula (13) is equivalent 
to the formula 

yR(R^0 => l;R;l = l) . (2.1) 

It is proved in [B. Jonsson et al. (1952), Thm. 4.10(iii)] that (2.1) forces 
models to be simple, and therefore so does formula (13). The models of the 
calculus of relations motivate the following definition. 
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Definition 2.4 A relation algebra is an algebra (A,+, - , _ ,0 ,1 , ; , ! . ' , " ) 
where + , • and ; are binary operations, ~~ and " are unary, and 0, 1 and 1' 
are distinguished elements. Furthermore, the reduct {A,+,-,~,0,l) is a 
Boolean algebra, and the following identities are satisfied for all x,y,z £ A: 

x; (y;z) = (x;y) ;z, (Ax. 1) 

(x+y) ;z = x;z + y;z, (Ax. 2) 

(x + y)" = x + y, (Ax. 3) 

x = x, (Ax. 4) 

x;V = V;x — x, (Ax. 5) 

(x;yY = y;x, (Ax. 6) 

x;y • z = 0 iff z;y • x = 0 iff x;z • y = 0. (Ax. 7) 

As an immediate consequence of Defs. 2.1 and 2.4 we obtain the follow­
ing theorem. 

Theorem 2.2 Every algebra of binary relations is a relation algebra. 

Proof The proof consists of showing that axioms Ax. 1-Ax. 7 hold in 
any algebra of binary relations, and is left as an insightful exercise for the 
reader. • 

We will denote the class of all relation algebras by RA and by < the 
ordering induced by the Boolean reduct. Thus, we will use the notation 
x < y as a shorthand for the equation x + y = y. Elements from either 
algebras of binary relations or relation algebras will be generally called 
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relations. In case it is necessary to mention elements from an algebra of 
binary relations, we will call them binary relations or concrete relations. 
We denote by 0' the diversity relation 1'. 

Alternative (and equivalent) axiomatizations for the calculus of relations 
can be obtained by replacing Ax. 7 in Def. 2.4 by any of the following two 
formulas: 

(x;y) -z < (x • z;y) ; (y • x;z), (2.2) 

x;y < z <=> x;z < y •$=> z;y < x. (2.3) 

Notice that (2.2) is an equation, and therefore the class of relation al­
gebras is a finitely based variety, i.e., it is axiomatizable by a finite set of 
equations. If we add formula (13) to the axiomatization of relation alge­
bras, we obtain the class of simple relation algebras. It is proved in [L. 
Chin et al. (1951)] that axioms (1)—(12) can be proved from Ax. 1-Ax. 7 
and viceversa. 

At the end of his paper [A. Tarski (1941)], Tarski asked the following 
questions: 

(1) Is every model of the calculus of relations isomorphic to an algebra 
of binary relations? 

(2) Is it true that every formula of the calculus of relations that is 
valid in all algebras of binary relations is provable in the calculus 
of relations? 

(3) Is it true that every formula of the elementary theory of binary rela­
tions can be transformed into an equivalent formula of the calculus 
of relations? 

The answer to these questions is negative in all cases. The first question 
was answered negatively by Roger Lyndon [R. Lyndon (1950); R. Lyndon 
(1956)] by exhibiting a non-representable relation algebra, i.e., a relation 
algebra that is not isomorphic to any algebra of binary relations. The im­
mediate consequence of this result is that there exist properties valid in 
all algebras of binary relations which can be false in some relation alge­
bras. The second question was answered by Lyndon, who showed that the 
equation 

b • c;d • e;f < a; a\c • b;d • (a;e • b;f) ; (e;c • f;d) \d 

is valid in all algebras of binary relations, but fails in the relation algebra 
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presented in [R. Lyndon (1950)]. McKenzie [R. McKenzie (1970)] also an­
swered the first question by presenting a small non representable relation 
algebra (Lyndon's algebra has fifty-six atoms, while McKenzie's has only 
four). Notice that since Tarski proved in [A. Tarski (1955)] that the class 
of representable relation algebras is a variety, i.e., it is axiomatizable with 
a set of equations, there must exist an equation that fails in McKenzie's 
algebra, providing a negative answer to the second question. An example 
of such an equation is given in [A. Tarski et al. (1987), p. 55]. With regard 
to the third question, a result due to Korselt and whose proof is included 
in [L. Lowenheim (1915)] shows that the expressive power of the calculus 
of relations is that of a proper restriction of first-order logic. The logical 
counterpart of the calculus of relations — denoted by £ x in [A. Tarski et 
al. (1987)] — is equivalent {equipollent is the technical term) with a three 
variables fragment of first-order predicate logic (see [A. Tarski et al. (1987), 
Ch. 3.9] for a detailed proof of this). If we recall our mission of devising a 
framework suitable for system specification, such lack of expressiveness has 
a negative impact since first-order specifications of systems are not likely to 
have meaningful translations into the calculus of relations. In [A. Tarski et 
al. (1987), §3.4(iv)] Tarski and Givant present the following formula, which 
is not equivalent to any sentence of the calculus of relations: 

Va;VyVz3u(uO'x A uO'y A u0' z) . (2.4) 

One way to convince oneself that this is indeed the case is by attempting 
to reduce this formula to a relational expression using the definitions of the 
relational operations. In Ch. 2.2 we will come back to this formula. 

For a more detailed study in the origin of relation algebras and the 
calculus of relations the reader is referred to [R. Maddux (1998); R. Maddux 
(1991)] and [C. Brink et al. (1997), Ch. 2]. 

In Def. 2.5 below we introduce some terminology to be used in further 
sections. 

Definition 2.5 A relation F is called functional if F;F < V. A relation 
/ is called injective if I; I < 1'. A relation S is called symmetric if S = S. 
A relation T is called transitive if T;T < T. A relation D is called left-ideal 
if D = 1;D, and right-ideal if D = D;l. A relation C is called constant if 
it is functional, left-ideal and C; l = 1. Intuitively, constant relations are 
alike constant functions (i.e., they map all inputs to a single value). We 
will generally denote the constant relation whose output is the value v by 
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Cv. By Dom (R) we denote the term (R;R)-V (the domain of the relation 
R), and by Ran (R) we denote the term (R;R)- V (the range of the relation 
R). Given a binary relation R, by dom (R) and ran (R) we denote the sets 
{x : 3y((x,y) £ R)} and {y : 3x((x,y) e # ) }, respectively. In general, we 
will denote algebras and structures by capital german letters (21, 23,.. .), and 
their universes by the associated roman letter (A, B,...). Given algebras 
21 and 23, by 21 X 23 we denote the fact that 21 is embeddable in 23 (i.e., 
there exists a one-to-one homomorphism from 21 to 23). Given a set S, by 
V (S) we denote the power set of S. 

The reader is invited to verify that when interpreted in algebras of 
binary relations, the conditions in Def. 2.5 characterize familiar notions. 
For example, a binary relation F satisfying the condition F;F < V will in 
effect be functional. 

2.2 Arithmetical Properties 

In this section a list of properties that are true in all relation algebras is 
presented. These properties will be used in further sections. Within the 
proof of Thm. 2.3, a reference to the nth property stated within the same 
theorem will have the shape 'by n'. 

Theorem 2.3 The following properties are valid in all relation algebras 
for all relations R, S, T, F, G and I: 

(1) R;0 = 0;R = 0. 
(2) 1 = 1. 
(3) 1;1 = 1. 
(4) (R+sy = R+S. 
(5) (R-Sy = R-S. 
(6) IfR<V thenR = R. 
(7) IfR,S< V then R;S = RS. 
(8) IfR< V then (R;l) -S = R;S and (1;R) -S = S;R. 
(9) IfF+G = V and F-G = Q, then F~^1 = G;1. 

(10) Dom(R) = (R;l) -V and Ran(R) = (1;R) -V. 
(11) Dom (R);R = R and R;Ran (R) = R. 
(12) Dom (R+S) = Dom(R) +Dom(S), i.e., Dom is additive. Simi­

larly, Ran(R+S) = Ran(R) +Ran(S). 
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(13) Dom (R\ = Ran(R) and Ran (ft) = Dom(R). 

(14) R;l=_Dom(R);l andl;R= l;Ran(R). 

(15) Tl = R. 
(16) (R-S) ;T < (R;T) • (S;T) and R; {S-T) < (R;S) • (R;T). 
(17) IfF is afunctional relation then F; (R-S) = (F;R) • (F;S). 
(18) If F is a functional relation, G < F, and Dom (G) = Dom (F) 

then G = F. 

(19) If F is a functional relation then Dom(F) ;F;R = F;R. 
(20) If I is an injective relation then (R-S) ;I = (R',I) • (S;I)-
(21) If I is an injective relation then R;I;Ran(I) = R;I. 
(22) IfF<V thenF-R • S = F;(R-S) and R;F • S = (R-S);F. 

Proof 

1. See [L. Chin et al. (1951) 
2. See [L. Chin et al. (1951) 
3. See [L. Chin et al. (1951) 
4. See [L. Chin et al. (1951) 
5. See [L. Chin et al. (1951) 
6. See [L. Chin et al. (1951) 
7. See [L. Chin et al. (1951) 
8. By monotonicity and Ax. 5 

Cor. 2.4. 
Thm. 1.7. 
Thm. 2.6. 
Thm. 1.11. 
Thm. 1.9. 
Thms. 3.2 and 3.5. 
Cor. 3.12. 

Then, 

R;S < R;l and R;S < V;S = S. 

R;S < (R;l)-S . 

also have 

R;S = (R-R);S 

= (R;R);S 

= (R;R) \S 

= R;(R;S) 

> (R- S;l);(l 

> (R;l)-S . 

R;S) 

(BA) 

(by 7) 

(by 6) 

(by Ax. 1) 

(by monotonicity) 

(by (2.2)) 

The other case is proved similarly. 
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9. In order to prove this property, we will show that G; 1 is the complement 
o f F ; l . 

(F ;1) . (G;1) = 0 <̂ => F;G;1 • 1 = 0 (Ax. 7) 

«=>• F ;G;1 = 0 (BA) 

<=» ( F - G ) ; 1 = 0 (by 7) 

^ 0 = 0 . (Hyp.) 

We also have 

F ; l + G;1 = (F + G);1 (Ax. 2) 
= 1';1 (Hyp.) 

= 1 . (Ax. 5) 

Prom (F;1)-(G;1) = 0 and (F;1) + (G;1) = 1, we deduce FjT = 
G;l . 

10. We will prove that Dom(R) < (R;l) -V and Dom(R) > (i?;l) -1 ' 

Dom (R) = (R;ii) -V (by Def. Dom) 

< (R',1) -V • (by monotonicity) 

Dom (R) = (R-,R\ -V (by Def. Dom) 

= ((R • l ' ; l ) ; ( l • # ;1 ' ) ) -1 ' (by Ax. 5 and BA) 

>(R;1)-V-V (by (2.2) and 2) 

= (R;1)-V. (BA) 

The proof for Ran follows in a similar way. 
11. The proof follows by 10 and [G. Schmidt et al. (1993)] Prop. 2.4.2. 
12. 

Dom(R+S) = ((iZ+5) ;1)-1 ' (by 10) 

= (R;1 + S ; l ) - 1 ' (by Ax. 2) 

= ( ( i i ; l ) - l ' ) + ( (S ; l ) - l ' ) (BA) 

= Dom (R) +Dom (S) . (by 10) 

The proof for Ran follows in a similar way. 
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13. 

Dom(fl) = (R.;R) -V 

= Ran{R) . 

(by Def. Dom) 

(by Ax. 4) 

(by Def. Ran) 

The proof for Ran (R1 follows in a similar way. 
14. We will show that R;l = Dom(R) ; 1 . The case with Ran is proved 

analogously. 

Dom(R);l> Dom(R);R;l 

= R:1 . 

Also, 

Dom(R) ;1 = {(R;l) -V) ;1 

< (R- l ' ; l ) ; ( l • R;V);1 

< -R;l;l 

= R;1 . 

15. See [L. Chin et al. (1951)] Thm. 1.10. 
16. By monotonicity we have 

(by monotonicity) 

(by 11) 

(by 10) 

(by (2.2) and 2) 

(by monotonicity) 

(by 3) 

Thus, 

(R-T);S < R;S and (R-T) ;S < T;S 

(R-T);S < (R;S)-(T;S) . 

17. See [L. Chin et al. (1951)] Thm. 4.2. 
18. See [G. Schmidt et al. (1993)] Prop. 4.2.2 (iv). 
19. In order to prove this result we will use the following property of 

Boolean algebras. Let R, S and T be arbitrary, then 

R-S = 0 and R+S = T implies R = T-S and S = T-R . (2.5) 

We will begin by proving that the hypothesis of (2.5) are satisfied 
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for suitable instantiations of R, S and T. 

F;R- F;R = F;(R-R) (by 17) 

= F;0 (by BA) 

= 0 . (by 1) 

F;R + F;R = F; (R+R) (by Ax. 2) 

= F;1 (byBA) 

= Dom(F);l. (by 14) 

Then, once the hypothesis that allow the application of (2.5) has 
been established, we proceed as follows: 

Dom(F);F;R = Dom(F);l • F;R (by 8) 

= F;R. (by (2.5)) 

20. The rationale of most proofs involving injective relations consists of 
transforming the original property to a related property of func­
tional relations. This property is usually obtained by applying the 
converse operator twice to some expression, which yields an ex­
pression equivalent to the original one. Once this new property has 
been stated, known properties of functional relations are used. 
For this specific case, since I is an injective relation, / is functional. 
Then, 

(R.S);I=m-S);I)T 

= (l;(R.Syy 

=& MY 
= id1*) • MY 
= (/;£)-•(/;£)" 

= (R;I) • (S;l) 

= (R;I)-(S;I). 

(by Ax. 4) 

(by Ax. 6) 

(by 5) 

(by 17) 

(by 5) 

(by Ax. 6) 

(by Ax. 4) 
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21. 

(R;iyy 

R;I;Ran(I) = ((R; I; Ran (/))")" 

= ((Ran (I))' 

= ((Ran (I))' 

= ((Ran (I))' 

= ((Ran (I))" 

I;Ry 

= R;I;((Ran(I))y 

= R~;I;Ran(I) 

= R;I. 

22. Since F < V, F is a functional relation. Then, F; (R-S) = F;R • F;S. 
By monotonicity, 

(by Ax. 

(by Ax. 

4) 

6) 

(by 15) 

(by Ax. 6) 

(by 19) 

(by 15) 

(by Ax. 

(by Ax. 

(by 

6) 

4) 

11) 

F;R • S<F;R. 

Also, 

F;R • S<F;1 • S 

= F;S . 

Then, 

F;R • S<F;S . 

Thus, by (2.6), (2.7) and BA, 

F;R • S<F;R • F;S . 

On the other hand, 

F;R • F;S<F;R • V ;S 

= F;R • S . 

(2.6) 

(by monotonicity) 

(by 8) 

(2.7) 

(2.8) 

(by monotonicity) 

(by Ax. 5) 

Then, 

F;R • F;S<F;R • S (2.9) 
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Joining (2.8) and (2.9), 

F;R • F;S = F;R • S . 

The case when F appears on the right hand side is proved analo­
gously. 

As a source for additional arithmetical properties of relation algebras, we 
direct the reader to any of [L. Chin et al. (1951); G. Schmidt et al. (1993); 
A. Tarski (1941)]. 



Chapter 3 

Proper and Abstract Fork Algebras 

3.1 On the Origin of Fork Algebras 

Let us recall formula (2.4): 

VxVyVzBuiuO'x A uO'y A uO'z). 

We have already mentioned in a previous chapter that it is not equivalent 
to any sentence of the calculus of relations. In order to overcome this 
limitation, it seems enough to have some operator V and a binary function 
• satisfying the following equivalence: 

uRx A uRy <s=> uRVR*(x,y) . (3.1) 

Under these conditions we can proceed as follows: 

VxVyVz3u (ttO'x A uO'y A uO'z) 
<=• {by (3.1)} 

VxVyizlu{uVx A uO'VO'* (y, z)) 
{bydef. of"} 

VajVj/VzBtifzO'u A uO' VO' * (y,z)) 

{bydef. of ; } 

VrrVyVz (xW; (0' VO') • (y, z)) 

{ by elementary logic } 

VxVyVz (z0 ' ; (0' VO') * (y, z) <=> true) 

19 
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<̂ => { by def. of 1} 

VxVyVzfzO'; (0 'V0 ' )*(y ,z) <=» xly A xlz) 

*=* {by (3.1)} 

VxVy\/z(xti';(0'V0')*(y,z) <^> z l V l *(j/ ,z)) 
<̂ => {[by def. of =1} 

0' ;(0 'V0') = 1V1 . 

Even though intuitively clear, the framed justification above needs an 
extra assumption, namely, that all elements that can appear in the range 

are indeed of the form *(fl, 6), for suitable a and b. Thus, we define 
the operator V (called fork) by the following formula from the elementary 
theory of binary relations: 

VxVy(xRVSy <=> 3u3v (y = *(u, v) A xRu A xSv)). (3.2) 

The development of the classes of proper and abstract fork algebras (to 
be introduced in Section 3.2) evolved around the meaning of the notation 
*(x,y). The study on fork algebras begun in [A. Haeberer et al. (1991)] 
when looking for a framework adequate as the foundation of a calculus for 
system specification, construction and verification. There, fork algebras 
are built using finite trees, i.e., the notation *(x,y) meant the tree with 
subtrees x and y. In [P. Veloso et al. (1991)], the definition is changed and 
finite strings are used instead of trees (the notation *(x, y) then meant the 
concatenation of strings x and y). Thus, the base of a fork algebra changed 
from a free groupoid to a free monoid. In [P. Veloso et al. (1992)], the base 
set is once again made out of finite trees. In all the previously mentioned 
articles, no axiomatization of the class of abstract fork algebras is given, 
but rather some valid properties are stated (an incomplete set of properties 
in every case). It was proved by Mikulas, Sain and Simon [S. Mikulas et al. 
(1992)] that the class of ABR extended with an operator V denned as in 
(3.2) with *(x, y) being either concatenation or binary tree formation is not 
finitely axiomatizable. It is in [A. Haeberer et al. (1993)a] and its published 
version [A. Haeberer et al. (1993)b] where the current axiomatization for 
abstract fork algebras is first used, since the version presented in [P. Veloso 
et al. (1993)] had an extra non-equational axiom necessary in order to 
achieve representability. On the other hand, [P. Veloso et al. (1993)] use 
the current definition of proper fork algebras (with *(x,y) denoting the 
application of a binary injective mapping to x and y), while [A. Haeberer 
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et al. (1993)a] and [A. Haeberer et al. (1993)b] still resort to finite trees. 
In order to complete the definition of fork given in (3.2), we will request 

* to be an injective mapping, i.e., it must satisfy the sentence: 

VrrVyVuVu (*(x, y) = *(u, v) =>• x = u A y = v) . (3.3) 

In the following sections we get into the technical details in order to 
define the classes of proper (also called standard) fork algebras and abstract 
fork algebras. 

3.2 Definition of the Classes 

The class of proper fork algebras (PFA for short) is the extension of the 
class of algebras of binary relations [B. Jonsson et al. (1952); A. Tarski 
(1941)] with fork. The operator fork induces a structure on the base of 
proper fork algebras. The objects, instead of being binary relations on a 
plain set, are binary relations on a structured domain (^4, * ) , where * is, 
by (3.3), an injective binary function on A. 

Definition 3.1 A star proper fork algebra is a two-sorted algebraic struc­
ture ( R , U, U, n, ~, 0, E, o, Id,"" , V, *) with domains R and U, such that: 

(1) {R,U,n,~,Q,E, o:Id,"~" ) is an algebra of binary relations on the 
set U, 

(2) * :UxU —> U isa. binary function that is injective on the restriction 
of its domain to E, 

(3) R is closed under fork of binary relations, defined by: 

SVT={(x,*(y,z)) :xSy A xTz} . 

A graphical interpretation of V is given in Fig. 3.1. Notice that in 
Fig. 3.1, in order to picture the fork of relations R and S, we use a two-
dimensional notation. Such notation will be used intensively throughout the 
book in order to obtain shorter and (hopefully) more readable expressions. 

In Def. 3.1(2), notice that E is a binary relation on U, and therefore the 
restriction of U x U to E is adequate. Proper fork algebras are obtained 
as reducts (some operations and domains are forgotten) of star proper fork 
algebras. 
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jW £ R(x) 

/ * 
x V 

\ 

\ , 

* 

eS(x) 

Fig. 3.1 The operator fork. 

Definition 3.2 We define the class of proper fork algebras (denoted by 
PFA) as Rd*PFA, where the operation R d takes reducts to the similarity 
type (U,n ,~ ,0 , l7x U, o,Id~ , V ). 

Notice that proper fork algebras are obtained from star proper fork 
algebras by forgetting the domain U and the function *. 

Definition 3.3 A proper fork algebra is full if its universe is of the form 
V (U x U) for some set U, and is square if its largest relation is of the form 
UxU. 

It follows immediately from Def. 3.3 that every full proper fork algebra 
is square, and a square proper fork algebra whose largest relation is U x U 
is a subalgebra of the full proper fork algebra with universe V (U x U). We 
will denote the class of full proper fork algebras by FullPFA and the class 
of square proper fork algebras by SPFA. 

Theo rem 3.1 Given a proper fork algebra 21, there exist an index set I 
and full proper fork algebras (2lj)je/ such that 

iei 

Proof Follow the lines of the proof of Thm. 2.1 and prove that h is a 
one-to-one fork algebra homomorphism. • 

In Def. 3.1 the function * performs the role of pairing, encoding pairs 
of objects into single objects. It is important to notice that there are * 
functions which are distinct from set-theoretical pair formation, i.e., *(x, y) 
differs from { x, { x, y } }. 

Notice that in order to define a FullPFA 21, it suffices to provide the set 
B<n and an injective mapping * : B<& x B<& —> B&-
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Given a PFA 21 with base B&, it is possible to single out those elements 
that do not represent pairs (if there are any). Notice that the term 1VI 
stands for the binary relation 

{ (x, y) : x G B a A Vu, v <= 5 a (y + *(u, v)) } . 

Thus, the term Ran (1V1) distinguishes those elements from the base that 
are not pairs. In what follows we will denote by 1' M the term Ran (1V1), 
by lu the term l ; i 'u and by M1 the term l 'u; l- We will call the elements 
from the base in the domain of I'M urelements, and will denote the set of 
urelements of a fork algebra 21 by Urel<&. 

Under the previous definitions, the equation 

i ; i ' u ; i = l (3-4) 

is valid in a proper fork algebra 21 only in case Urel^ is nonempty. We will 
denote by PFAU the subclass of proper fork algebras with a nonempty set 
of urelements (i.e., satisfying (3.4)). Also, we denote by SPFAU the class of 
square proper fork algebras with urelements. 

In the proof of several theorems to come, it will be necessary to explic­
itly construct proper fork algebras. By the 'full fork algebra with set of 
urelements U', we mean the following construction: 

(1) Construct the absolutely free groupoid (U*, *) with set of genera­
tors U 

(2) Construct the full fork algebra on the set U*, the operation V being 
defined by the condition RV_S = { {x, *(y, x)) : xRy and xSz } 

As a particular instance of the application of the operator fork, we have 
the relation IdV_Id. When this relation is interpreted in a proper fork 
algebra, it produces two copies of a given input element. Fig. 3.2 illustrates 
its definition. This relation will be denoted by 2. 

Given a pair of binary relations, the operation called cross (and denoted 
by <g>) performs a kind of parallel product. A graphic representation of cross 
is given in Fig. 3.3. Its set theoretical definition is given by 

i?(g)5= {(*(x,y),*(w,z)) : xRw AySz}. 

It is not difficult to check that cross is definable from the other relational 
operators with the use of fork. It is a simple exercise to show that if V is 
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Fig. 3.2 The relation 2. 

•R >-w e R(x) x— 

* ® * 

y S -z e S(y) 

Fig. 3.3 The operator cross. 

the greatest relation in a proper fork algebra, then 

R® S = {(IdV_V)~oR)V((VV.Id)-oS). 

Much the same as relation algebras are an abstract version of algebras 
of binary relations, proper fork algebras also have their abstract counter­
part, the class of abstract fork algebras (AFA). As we will see in the next 
definition, the class of abstract fork algebras can be axiomatized with a 
finite set of equations, and therefore is a finitely based variety. 

Definition 3.4 An abstract fork algebra is an algebraic structure 

( i ? , + , - , - , 0 , l , ; , 1 V , V ) , 

where (R, +, •, ~, 0,1, ;, 1',") is a relation algebra and for all r, s,t,q £ R, 

rVs = (r; (1'VI)) • (s; (1V1')), (Ax. 8) 

( r V * ) ; ( t V g r = ( r ; t ) •(*;$), (Ax. 9) 
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( 1 ' V 1 ) U V ( 1 V 1 T < 1 ' . (Ax. 10) 

The class of simple abstract fork algebras (SAFA) contains those ab­
stract fork algebras satisfying formula (2.1). Those abstract fork algebras 
that satisfy (3.4) are said to have urelements, and their class is denoted 
by AFAU. The class of simple abstract fork algebras with urelements is 
denoted by SAFAU. AtFAU denotes the class of atomic fork algebras with 
urelements (i.e., fork algebras with urelements whose Boolean reduct is 
an atomic Boolean algebra), and AtSFAU denotes the class of atomic and 
simple fork algebras with urelements. 

Prom the abstract definition of fork induced by the axioms in Def. 3.4, 
it is possible to define cross by the equation 

R®S = ((!' V1)U;J2) V ((1V1')U;S) (3.5) 

When interpreted in a proper fork algebra, the relations ( l ' V l ) " and 
(1V1')U behave as projections (they are actually called quasi-projections), 
projecting components from pairs constructed with an injective function 
*. We call them it and p respectively. They will allow us to cope in 
further sections with the lack of variables over individuals in the language of 
abstract fork algebras. Figure 3.4 illustrates the meaning of these relations. 

\ * V z 

, / 

" \ 
* V 

> 

Fig. 3.4 The projections 7r and p. 

Notice that under the previous definitions of 7r and p, (3.5) can be spelt 
in a simpler form as follows: 

R®S=(n;R)V(p;S) . 
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3.3 Arithmetical Properties 

Theorem 3.2 The following properties hold in all fork algebras for all 
relations F, I, R, S, T and U. 

(1) (RVS);2 = R-S. 
(2) (RVS) ;TT = Dom(S) ;R and (RVS) ;p = Dom(R) ;S. 
(3) R; (SVT) < (R;S) V (R;T). 
(4) Let F be functional, then F; (RVS) = (F;R)V (F;S). 
(5) IfF<V then (F;R)VS = F; {RVS). 
(6) (RVS) • (TVU) = (R-T) V (S-U). 
(7) (R®Sy = R®S. 
(8) (R®S) • (T®U) = (R-T) ® (S-U). 
(9) (RVS) ; (T®U) = (R-T) V (S;U). 

(10) (R®S) • (T®U) = (R;T) ® (S;U). 
(11) (R+S)®T = (R®T) + (S®T), i.e., <g> is additive. Similarly, 

R®(S+T) = (R®S) + (R®T). 
(12) (R®V);TT = TT;R and (V®R) ;p = p;R. 

(13) The relations n and p are functional. 
(14) #;p = l. 
(15) Dom(TT) = Dom(p) = V ®V. 
(16) Dom (TT;R) = Dom (R) ®V and Dom (p;R) = V®Dom (R). 

(17) (R®V);2 = Dom((V ®R) ;2) ;p. 
(18) Let F be functional, then vf • 1; (1' VF) = V VF. 

(19) If I is injective, then (V ® R;I) ;2 = Dom ((I®R);2J ;n and 

(R;I ® V) ;2 = Dom ((R®I);2^) ;p. 

(20) (V®V) ;R~®S; (V®V) = (R®l) + (l®S). 

Proof 

1. If we recall that 2 equals 1' VI ' , then the property follows immediately 

applying Ax. 9. 
2. We will prove the first property, namely, that 

(RVS);ir = Dom(S);R. 
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We then proceed as follows. 

(RVS) ;?r = (RVS) ;(1' VI)" (by Def. jr) 

= R;V • S;l (by Ax. 9) 

= fl • 5;1 (by Thms. 2.3.6 and 2.3.2) 

= # • Z>om (S) ; 1 (by Thm. 2.3.14) 

= Dam (S) ; # . (by Thm. 2.3.8) 

The case with p follows in a similar way. 

R;(SVT) = R;(S;TT • T;p) (by Ax. 8) 

< (R;S;n) • (R;T;p) (by Thm. 2.3.16) 

= (R;S)V(R;T). (by Ax. 8) 

F; (RVS) = F; (R;n • S;p) (by Ax. 8) 

= (F;R;TT)-(F;S;P) (by Thm. 2.3.17) 

= (F;R)V(F;S). (by Ax. 8) 

F;RW S = F;R;TT • S;p (by Ax. 8) 

= F; (R\TC • S;p) (by Thm. 2.3.22) 

= F;(RVS). (by Ax. 8) 

{RVS) • (TV 17) = R;# • S;p • T;TT • U;p (by Ax. 8) 

= R\ii • T;TT • S;p • U;p (by BA) 

= {R-T) ;n • {S-U) ;p (by Thm. 2.3.20) 

= (R-T) V (S-U). (by Ax. 8) 
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(R®Sy=(n;R V p;Sy (by (3.5)) 

= (7r;R;7t • p;S;pY (by Ax. 8) 

= (n;R;Try-{p;S;py (by Thm. 2.3.5) 

= TT;R;% • p;S;p (by Ax. 6) 

= Tr;R;Tt • p;S;p (by Ax. 4) 

= (jr;R) V (p;S) (by Ax. 8) 

= R®S. (by (3.5)) 

(R®S) • (T®U) = ((ir;R) V (p;S)) • ((TTJT) V (p;U)) (by (3.5)) 

= n;R;TT • p;S;p • TT;T;TT • p;U;p (by Ax. 8) 

= 7r;(R-T);7t • p;(S-U);p 
(by Thms. 2.3.17, 2.3.20) 

= (*;(R-T))V(p;{S-U)) (by Ax. 8) 

= (R-T)®(S-U). (by (3.5)) 

(i?V5) ; (T®U) = (RVS) ;((T®Uyy (by Ax. 4) 

= (RVS);(f®(jy (by 7) 

= (i?V5);(7r;f V p;tjy (by (3.5)) 

= ( i? ; (7r ; f r ) • (S;(p;Uy) (by Ax. 9) 

= (i?;T;7f) • (S;U;p) (by Ax. 4, Ax. 6) 

= {R;T)V{S;U). (by Ax. 8) 

(fl®S) ; (T®U) = ((7r;i2) V (p;5)) ; ( 7 W ) (by (3.5)) 

= (n;R;T)V(p;S;U) (by 9) 

= (i2;T)®(S;17). (by (3.5)) 
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11. 

(R+S) ®T = (TT; (R+S)) V (p;T) (by (3.5)) 

= ir;(R+S);# • p;T;p (by Ax. 8) 

= {Tr;R;7t+ TT;S;TT) • p;T;p (by Ax. 2) 

= (n;R;n • p;T;p) + (TTJS;* • p;T;p) (BA) 

= {(ir;R) V (p;T)) + ((7r;5) V (p;T)) (by Ax. 8) 

= ( i J®r) + (5®T) . (by (3.5)) 

The other case follows in a similar way. 
12. 

13. 

(R&V) ;ir = fcR V p) ;vr 

= (7r;i2 V / o ) ; ( l ' V i r 

= rr;R;V • p;l 

= TT;R. 

The case with p follows in a similar way. 

7f;7r = ((rvi)T;(rvir 

(by (3.5)) 

(by Def. TT) 

(by Ax. 9) 

(by Thm. 2.3.16) 

(by Def. n) 

= (l 'Vl) ;( l 'Vir 
= 1';1' • 1;1 

= 1';1' • 1;1 

= 1'-1 

= r. 

(by Ax. 4) 

(by Ax. 9) 

(by Thms. 2.3.6 and 2.3.2) 

(by Ax. 5 and Thm. 2.3.3) 

(by BA) 

14. 
The proof for p is analogous. 

#;p = ( ( i 'Vi )T; ( iv iT 
= (1'V1);(1V1T 
= ( l ' ; l ) . ( l ; r ) 
= (1' ;1).(1;1') 

= 1-1 

= 1. 

(by Defs. n and p) 

(by Ax. 4) 

(by Ax. 9) 

(by Thms. 2.3.2 and 2.3.6) 

(by Ax. 5) 

(by BA) 
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15. In order to show that Dam {it) = l'<g>l' we will show that 7r;l = 

(1 '®1') ;1. 

<) 7r;l = ( l 'O l ' ) ; 7r;l (by 9) 

< (1' <g> 1') ; 1; 1 (by monotonicity) 

= (1'<8>1');1. (by Thm. 2.3.3) 

>) ir;l = TT;1;1 (by Thm. 2.3.3) 

= (TT;1 • 1);1 (byBA) 

> (7r;7r • p;p) ;1 (by monotonicity) 

= ( l ' ® i ' ) ; l . (by (3.5)) 

The proof for p is analogous. 
16. 

Dom(ir;R) = (n;R;l) -V (by Thm. 2.3.10) 

= (IT;Dam (R) ;1) -1' (by Thm. 2.3.14) 

< (Tr;Dom(R) • l ' ; l ) 

; (1 • Dom{R)-TT-V) (by (2.2)) 

= ir;Dom (R) ;Dom (R) ;7r (by Ax. 5 and BA) 

= IT ; {Dam (R) • Dam (R)) ;% (by Thm. 2.3.7) 

= ir;Dom(R) ;w. (BA) 

Also, 

Thus, 

Dom(ir;R) = (TT;R;1) -V (by Thm. 2.3.10) 

< (7r;l) -1' (by monotonicity) 

= Dam (TT) (by Thm. 2.3.10) 

= Dom (p) (by 15) 

= (p;p)-V (by Def. Dom) 

< p ; p . (by monotonicity) 

Dom(Tr;R) < (ix;Dom{R) ;n) • (p;p) = Dom(R) ®1' . 



Arithmetical Properties 31 

Let us show now the other inclusion. First, let us note that 

Dom(R) ®V = n;Dom(R) V p (by (3.5)) 

= ir;Dom(R) ;TT • p;p (by Ax. 8) 

< n; Dom (R) ;1 (by monotonicity) 

= Tt;R;l. (by Thm. 2.3.14) 

Second, note that by monotonicity Dom (R) ® 1' < 1' ® 1', and 
since by Ax. 10, 1' <g> 1' < 1', by transitivity Dom (R) ® 1' < 1'. 
Thus, 

Dom(R)®Y < (ir;R;l)-V =Dom(ir;R). 

17. First, note that 

(£<8>1') ;2 = IT;R • p (by (3.5) and Ax. 9) 

< ((TT . p ; f l ) ; ( A - # ; p ) ) - p (by (2.2)) 

= ( ( 7 r - p ; f l ) ; ( i i - l ) ) - p (by 14) 

< ((TT • p;R) ;1) -p (by monotonicity) 

= (£>om(7r • p;R) ;1) -p (by Thm. 2.3.14) 

= Dom (TT • p;R)\p (by Thm. 2.3.8) 

= Z)om((7r V p;R);2) ;p (by Ax. 9) 

= Dom((V®R);$);p. (by (3.5)) 

In order to prove the equality we will reason as follows. First, note 
that the relation Dom ((V<g>R);2) ;p is functional. Since we have 
already shown that (_R®l');i> < Dom ((1' ®R);2) ;p, by Thm. 
2.3.18 it suffices to show that 

Dom((R®V);%) > Dom{{V®R);2) 
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We proceed as follows. 

Dom ((R®V);'2\ = Dom (h;;R V p);~2\ (by (3.5)) 

= Dom ( (TT ; R • p)) (by Ax. 9 and Ax. 4) 

= Dom (i(ir;RY • p)") (by Thm. 2.3.5) 

= Dom ( ( # ; # • pY) (by Ax. 6 and Ax. 4) 

= Dom ( ( iZVl 'D (by Ax. 8) 

= Ran (RW). (by Def. Dom) 

We also have 

Dom((V®R);2) = Dom ((TT V p\R)\2) (by (3.5)) 

= Dom (((TT • p\R)y) (by Ax. 9 and Ax. 4) 
= Dom((% • (p;RYY) (by T h m - 2.3.5) 

= Dom ((it • R;pY) (by Ax. 6) 

= Dom ((V VR)") (by Ax. 8) 

= Ran(VVR). (by Def. Dom) 

We will finally show that Ran (RW) > Ran(V VR). 

Ran(RVV) = ( l ; ( i?Vl ' ) ) -1' (by Thm. 2.3.10) 

= (l;(R;n • p))-V (by Ax. 8) 

> (l;R; (R;TT • p)j -V (by monotonicity) 

= ( l ; ( £ - l ) ; ( f l ; * • p)) -V (BA) 

= ( l ; ( A . ( # ; p ) ) ; ( f l ; * - $ ) - l ' (by 14) 

> ( l ; (n • £ ; p ) ) -V (by (2.2)) 

= ( l ; ( l ' V # ) ) - l ' (by Ax. 8) 

= iton ( l ' V R \ . (by Thm. 2.3.10) 
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18. In order to prove the equality we will prove both inclusions. 

n • 1;(1 'VF) 

> (V VI) • 1'; (1' VF) (by Def. TT and monotonicity) 

= ( l ' V l ) - ( r V F ) (by Ax. 5) 

= (1'-1' V 1-F) (by 6) 

= 1'VF. (by BA) 

TT • 1;(1 'VF) 

< ( 1 - ( i ' V l ) ; ( l ' V F r ) ; ( l ' V F - (1;(1'V1))) (by (2.2)) 

= (1' V1) ; (1' VF)"; (V VF • (1; (1' V1))) (by BA) 

= (1' VI) ; (1' VF)"; (V V F ) (by monotonicity) 

= ( l ' - 1 ; F ) ; ( 1 ' V F ) (by Ax. 9) 

= (v • 1;FV; (V VF) (by Thm. 2.3.6) 

= (v • ( l ; -F)u) ; (1 'VF) (by Thm. 2.3.5) 

= (v • P]l) ; (1' V F ) (by Thm. 2.3.6 and Ax. 6) 

= (1' • F ; l ) ; (1 'VF) (by Thm. 2.3.2 and Ax. 4) 

= Dom(F);(VVF) (by Thm. 2.3.10) 

= Dom (F) V Dom (F) ;F (by 4) 

= Dom (F) V F (by Thm. 2.3.11) 

= 1' VF. (by 5) 

19. Since the proofs of both properties are analogous, we will focus on 
the first one. In order to prove the equality we will prove both 
inclusions. Note first that by Thms. 2.3.8 and 2.3.14, 

Dom ({I'<g>R);l) ;TT= (I®R);2;1 • n . 

(V® R;I);2=ir • p;R;I (by (3.5) and 1) 

< TT- (by BA) 
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Also, 

(1'® R;I);2 

= TT • p;R;I (by (3.5) and 1) 

= 7T • p;R;I;Ran (I) (by Thm. 2.3.11) 

= it;Ran (I) • p;R;I (by Thms. 2.3.22 and 2.3.20) 

= n;(I;I • V) • p;R;I (by Def. Dom) 

<7r;7;7 • p;R;I (by monotonicity) 

= (TT;/ • p;R);I (by Thm. 2.3.20) 

< (ir;I • p\R);l (by monotonicity) 

= (I®R);2;l. (by (3.5) and 1) 

Thus, 

(l'<g> R;I) ;2 < Dom ((l®R) ;2\ ;TT . 

Let us now prove the other inclusion. For this, note that by (3.5) 
and 1, 

(1' ® R;I) ;2 = n • p;R;I . 

Then, 

Dom M/ig) .Rj; iM;7r<r;7r (by monotonicity) 

= n. (by Ax. 5) 

Also, 

Dom{(I®R);2);-K 

= Dom(ir;I • p;R);ir (by (3.5) and 1) 

= ( ( ( T T ; / • p;R);{-K;I • p;fl)u) -1') ;TT (by Def. Dom) 

= ( ( ( T T ; / • p;R);(I;n • R;p)) -1') ;TT 

(by Thm. 2.3.5 and Ax. 6) 

< p; R; I; TT ; 7r (by monotonicity) 

<p;R;I;V (by 13) 

= p;i2;7. (by Ax. 5) 
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Thus, 

Dom((l®R\ ;S) ; T T < ( 1 ' ® R;I);2. 

20. 

(r®r);E®3;(l '®l') 
= (1'®1') ;7r;jR;7f • /ojSj/S; (1'®1') (by (3.5) and Ax. 8) 

= (l '®l ') ;(^Ri¥ + ^ 5 ^ ) ; ( l ' ® l ' ) (byBA) 

= (r®i ' ) ;^Ri¥;(r®i ' ) 
+ ( 1 ' ® 1 ' ) ; ^ # ( 1 ' ® 1 ' ) (byAx.2) 

= TTJSJTT + p{S;p (by 15 and Thms. 2.3.19, 2.3.21) 

= (n;R;7t • l) + (l • p;S;p) (by BA) 

= (jr;R;n • Dom(Tr) ;l;Dom(Tr)) 

+ (Dom(p);l;Dom(p) • p{S;p) (by Thm. 2.3.22) 

= (jr;R;iT • Dom(p) ;l;Dom(p)) 

+ (Dom(ir);l;Dom(n) • p;S;p) (by 15) 

= (TTJIJTT • p;l;p) + (ir;l;n • p-j5;p) (by Thm. 2.3.14) 

= (B®1) + (1®5) . (by (3.5) and Ax. 8) 

D 
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Chapter 4 

Representability and Independence 

Abstract fork algebras arose in the search for an abstract formalism suit­
able for systems specification and verification. As we will see in further 
chapters, their expressive power allows us to cope with different specifica­
tion formalisms. Also, the calculus of abstract fork algebras with its simple 
equational rules allows non experts to understand and use the calculus. 
If specifications are to be written as formulas in the language of abstract 
fork algebras, we need an easily understandable semantics for these speci­
fications. Obvious candidates are the abstract fork algebras, but it is not 
at all clear what these algebras look like. Better candidates to play this 
role are the proper fork algebras. They are particularly adequate because 
their universe made of binary relations and their simple operators can be 
understood even by non mathematicians. The previous remarks show that 
it is important to determine the relationship between proper and abstract 
fork algebras. The ideal situation would be for proper and abstract fork 
algebras to be the same thing. Since abstract fork algebras are models of 
a set of equations, the class is closed under isomorphisms, and therefore, 
the best we can expect is for abstract fork algebras to be isomorphic to 
proper ones. This is known as the representability problem for abstract 
fork algebras. The solution to this problem was obtained independently by 
Prias-Haeberer-Veloso [M. Prias et al. (1997)b] and by Gyuris [V. Gyuris 
(1995)]. In Section 4.1, and using as a central result a theorem due to 
Tarski [A. Tarski (1953)] on the representability of quasi-projective rela­
tion algebras (and generalized by Maddux in [R. Maddux (1978)]), we will 
present the representability theorem for abstract fork algebras. 

As a corollary of the representability theorem, the axioms for abstract 
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fork algebras provide a finite (and equational) axiomatization for proper 
fork algebras. In Section 4.2 we prove the independence of these axioms 
(i.e., we prove that none of the axioms can be deleted from the axiomati­
zation) . 

4.1 Representability of Abstract Fork Algebras 

Definition 4.1 We define the class of representable fork algebras as 
IPFA, the closure under isomorphism of proper fork algebras. 

The class of representable fork algebras will be denoted by RFA. 
In the next lemma we prove that relations n and p are a pair of quasi-

projections as defined in [A. Tarski et al. (1987), p. 96]. 

Lemma 4.1 The relations ir and p are functional. Moreover, the equation 
n;p = 1 holds in every abstract fork algebra. 

Proof By Thms. 3.2.13 and 3.2.14. • 

Relation algebras with projection elements have been widely studied. 
In [A. Tarski et al. (1987)], relation algebras having functional elements 
A and B satisfying A;B = 1 are called quasi-projective relation algebras 
by Tarski and Givant, and Maddux [R. Maddux (1989)] calls structures 
(9^, A, B) (9t a relation algebra), pairing relation algebras. Prom Lemma 
4.1 we immediately obtain the following corollary. 

Corollary 4.1 The relation algebra reduct of any abstract fork algebra 
is a quasi-projective relation algebra. Moreover, if we call 9̂  the relation 
algebra reduct of a given abstract fork algebra, then any structure (9^, 7T, />) 
is a pairing relation algebra. 

As the next step we will prove that the axioms characterizing abstract 
fork algebras are satisfied in any proper fork algebra, thus establishing that 
RFA C AFA. 

Theorem 4.1 RFA C AFA. 

Proof By Thm. 3.1, PFA = ISPFullPFA. Since the axioms of AFA are 
equations and equations are preserved under I (isomorphisms), S (subal-
gebras) and P (products), it suffices to show that for every 21 € FullPFA, 
21 satisfies axioms Ax. 1-Ax. 10. Therefore, for the remaining part of this 
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theorem, let 21 6 FullPFA. Notice that the reduct of 21 to the similarity 
type (U, fl, ~, 0, U x U, o, Id,^ ) is an algebra of binary relations, thus sat­
isfying Ax. 1-Ax. 7 characterizing RA. To shorten notation we will denote 
the relation U x U by V. 

In order to show that Ax. 8 holds in 21, we will prove that for any binary 
relations R,SeA, RV_S = (Ro (Jtf V V)) n (So (VVId)). 

xRVSy 
<s=^ { by def. V } 

3u,v (xRu A xSv Ay = *(u, v)) 
{ by def. Id and V } 
3u, v(xRu A uldu A uVv A xSv A i;Vu A u/cfr; Ay = *(u, v)) 
{ by def. V } 
3u, v (xRu A uIdW_Vy A xSv AvVV_Idy) 
{ elementary logic } 
3u (xRu A uldVVy) A 3v {xSv AvVV_Idy) 

4=> { by def. o } 
xRo (IdVV)y A xSo (VVId)y 

<=> { by def. n } 
x(Ro (Id%V)) n (So (VV_Id))y . 

In order to prove that Ax. 9 holds in 21, we will prove that for any binary 

relations R, S, T and Q, (RVS) o(TV_Q)~ = (R° T) n (So Q). 

x(RVS)o(TVQrv 
{ by def. o } 
3u (xRV.Su A u(TVQ)~i / ) 
{by def. -} 
3u(xRV_SuAyTV_Qu) 
{ by def. V } 
3u, V\,V2, W\,W2(xRv\ A xSw\ A U = *(v\,w{) 

A yTv2 AyQw2 Au = *(u2,w^)) 
{by * injective} 
3v, w (xRv A xSw A yTv A yQw) 
{ by elementary logic and def. "" } 

3v,w (xRv AvTy AxSw AwQy) 

{ by def. o } 

xRoTyAxSoQy 

{ by def. n } 

x(RoT)n(So Q)y . 

http://xRV.Su
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Regarding Ax. 10, in order to show that it holds in 21, we will show that 

( W W ) ~ V ( ^ V W ) ~ £ Id . 

=> { by def. V } 
3u,v(x(IdV.V)^u A x(V^Id)^v Ay = *(u, v)) 

=* {by def. -} 
3u, v{uIdVVx A vVV_Idx A y = *(u, t;)) 

=> {by def. V } 
3u, v, u', v'(uldu' A vldv' Ax = *(u', v') Ay = *(u, v)) 

=• { by def. Id } 
3u,w,u',v'(u = u'Av = v'Ax = *(U',V') Ay = *(u,v)) 

=£• {by * function} 
x = y . D 

Lemma 4.2 Consider 21 G SAFA with relation algebra reduct 21'. Given 
a relation algebra homomorphism h : 21' —• 25 into a square algebra of 
binary relations 25, there exists an expansion of 05 to 05* G SPFA so that 
h : 21 —> 05* is a /orfc algebra homomorphism. 

Proof The algebra 05 consists of relations on a set U, with largest element 
V = UxU. 

Since the quasi-projections Tr,p £ A', h (n) ,h(p) £ B. 
By Lemma 4.1, 21' satisfies: 

7 r ; p = l , 7 r ; 7 T < r , p;p < V 

Thus, 

(h(Tr)roh{p) = h(l) = V, 

h (TT) is a functional binary relation, 

h (p) is a functional binary relation. 

We define the relation FC\(UxU)xUby 

((a,b),c)£F «=> (c,a)Gh(n) and (c,b)eh(p) . 

(1) F = Z)om(F). 
Given (a, b) G V, since V C (h (n))*" oh (p) there exists c£U such 
that (a,c) G (/J(TT))~ and (c,6) G h(p). Thus, ((a,6) ,c> G F . 
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(2) F is functional on V. 
Let ((a,b) ,x),((a,b),y) G F. Then (x,a) € /i(7r), (x,b) G fc(p), 
(y,a) G h(n) and (y,6) G ft(p). 
Thus, (x,y)e(h(IT) o(h(ir)r)n(h(p)o(h{p)r). 
But, by Ax. 8 and Ax. 10 in Def. 3.4, 21' satisfies (TT;TT) • (p;p) < V, 

thus 

(h(ir)o(h(ir))~)n(h(p)o(h(j>))~) Ch(V) = Id. 

Hence, x = y. 
(3) F is injective on V. 

Consider (a, b), (c, d) G V such that {(a, b) ,z), ((c, d ) , z) G F for 
some z &U. 
Then (z, a ) , (z, e) £ h (n) and (z, 6), (z, d) £ h (p). Since /i (7r) and 
/i (/)) are functional binary relations, a = c and b = d. 

Hence, the restriction of F to V gives a well-defined injective function 
* : V —> t/ such that 

*(a,ft) = c «=>• (c,a) G /i(7r) and (c,b) £ h(p) . (4.1) 

We expand 05 to 05* G PFA by denning 

RVS = {(x,*(y,z)):(x,y)£R A (x,z)eS}. 

In order to show that 05* is closed under V, let us prove that 

h(R)Vh(S) = (h(R)oh(Tr)~)n(h(S)oh(p)~) . (4.2) 

xh(R)Vh(S)y 
«- { by def. V } 

3u,v(xh(R)u Axh(S)v A y = *(u, v)) 
& {by (4.1)} 

3u,v(xh(R)u Auh(Tr)"^y Axh(S)v Avh(p)*^y Ay = *(u,v)) 
•*=> {by def. o } 

xh(R)oh(ir)^y A xh(S)oh(p)""y 
•& {by def. n } 

x(h(R)oh(n)~) n (h(S)oh(p)-)y . 
We will now see that h is a fork algebra homomorphism from 21 into 05* 

(i.e., we will show that h preserves fork). 
Consider r, s G A. 
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h(rVs) 
= {by Ax. 9} 

h((r;n) • (s;p)) 
— { h is a relation algebra homomorphism } 

(h(r)o(h(n)r)n(h(s)o(h(p)D 
= {by (4.2)} 

h(r)Vh{s) . • 

Lemma 4.3 AFA = I S P SAFA. 

Proof In [B. Jonsson et al. (1952), Thm. 4.14] Jonsson and Tarski proved 
that simple relation algebras are subdirectly indecomposable. This result 
also holds for fork algebras, since a subdirect decomposition of a fork algebra 
induces a subdirect decomposition of its relation algebra reduct. Joining 
this with Birkhoff's theorem on the decomposability of arbitrary algebras 
in terms of subdirectly indecomposable ones [G. Birkhoff (1944)], we prove 
inclusion C. Inclusion 2 follows because AFA is a variety, SAFA C AFA, 
and equations are preserved by I, S and P . • 

In the proof of Thm. 4.2 we give below, we use the result announced 
in [A. Tarski (1953)] on the representability of quasi-projective relation 
algebras. This theorem is one of the central topics in algebraic logic, and 
different kinds of proofs for it can be found in [A. Tarski et al. (1987), 
Thm. 8.4(iii)], [R. Maddux (1989)] and elsewhere. 

Theo rem 4.2 Given 21 € AFA, there exists 23 G PFA isomorphic to 21. 

Proof In view of Lemmas 3.1 and 4.3, it suffices to prove that simple 
fork algebras are represent able. 

Given 21 € SAFA, by Cor. 4.1 its relation algebra reduct 21' is a simple 
quasi-projective relation algebra. Thus, since quasi-projective relation al­
gebras are representable [A. Tarski et al. (1987), p. 242], there is a relation 
algebra isomorphism h : 21' —> 23 onto an algebra of binary relations 23. 
Since 21' is simple, we can assume that 23 is square [A. Tarski et al. (1987), 
p. 239]. 

By Lemma 4.2, 23 can be expanded to 23* S SPFA, in such way that 
h : 21 —• 23* is a fork algebra isomorphism. • 

Theo rem 4.3 AFA = RFA. 

Proof It follows from Thm. 4.2 that AFA C IPFA = RFA. By Thm. 4.1, 
RFA C AFA. • 
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A direct consequence of Thm. 4.3 is that the classes of proper and ab­
stract fork algebras share the same first-order theory. This result on the 
elementary equivalence of the classes is extremely useful in our setting, 
since first-order formulas in the language of fork algebras now have a clear 
meaning when being considered as assertions about binary relations (or 
programs). It will be shown in Section 7.5 that, while equations suffice 
to express algorithms, first-order formulas about relations can be used to 
describe design strategies for program development. This adds a new di­
mension to the development of algorithms within fork algebras. 

4.2 Independence of the Axiomatization of Fork 

The fact that the class of fork algebras is a finitely based variety leaves 
open the problem of whether the axiomatization adopted has superfluous 
axioms. This is known as the independence of the axioms that characterize 
fork. Avoiding superfluous axioms is important because fewer axioms make 
the calculus easier to understand. Also, it may have a positive impact in 
the performance of semi-automatic theorem provers. In this section we will 
show that the axioms that characterize fork (Ax. 8-Ax. 10 from Def. 3.4) are 
independent. In order to show the independence of a finite axiomatization 
A = {A\,...,An}, it suffices to show that for each i, 1 < i < n, there 
exists an algebra 21* such that 

2UM\Mi} a n d 2 l iM«- (4-3) 

In the particular case of fork algebras, given proper subsets of the ax­
iomatization we will construct algebras satisfying (4.3) by analyzing the 
meaning of the missing axiom towards the representability of fork algebras. 

In what follows, we will denote the set containing formulas Ax. 8-Ax. 10 
from Def. 3.4 by A r m y . 

Theorem 4.4 The set of axioms Axm^ defining fork is independent. 

Proof In order to show that Ax. 8-Ax. 10 are independent, we will 
present algebras of binary relations 21*, 1 < i < 3, and operations V*, 
1 < i < 3, such that* (21,, V*) |= Axmv \ {Axm. i} but (21*, V*) \£ 
Axm. i. In the proof of Lemma 4.2, Ax. 8-Ax. 10 are used in order to 

* Given an algebra 21 and an operation © : An —* A, by (21, ©) we denote the extension 
of the algebra 21 obtained by adding the operation ffi. 
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prove that the relation F is indeed an injective function as required (see 
Def. 3.1). Thus, each axiom imposes some properties on this relation F. 

In order to prove that Ax. 10 is independent of Ax. 8 and Ax. 9, notice 
that Ax. 10 is used in Lemma 4.2 to show that F is functional. Let us 
define 2l3 as !EHe(lN+), the full algebra of binary relations on the set 1N+ of 
all positive natural numbers, and let V 3 be denned for R,SC 1N+ x IN+ 

by 

i ? V 3 5 = { (m,2™ * 3P) :mRn A mSp) 

U { ( m , 5 n * 7 p ) :mRn A mSp} . (4.4) 

In (4.4), F is the (non functional) injective binary relation 

{ ( ( m , n ) , 2 m * 3 " ) : m,n € 1N+} U { ((m,n) , 5 m * 7n) : m , n € l N + } . 

It is clear that 2l3 is closed under V 3 . Let V be a shorthand for the 
binary relation IN+ x 1N+. Notice that 

WY 3 V = { (m, 2 m * 3n) : m, n e IN+ } U { (m, 5 m * T) : m, n e 1N+ } 

and 

VV_3Id = { (m, T * 3m) : m, n G 1N+ } U { (m, 5" * 7m) : m, n e K + } . 

Then, given binary relations R, S C M + x IN+, 

R° (WV 3 7) = { (m,2n*3p):p£JN+ A m.Rn} 

U { (m, 5" * 7p) : p e 1N+ A mRn } 

and 

So (VV3Id) = { (m, 2" * 3p) : n € 1N+ A m 5 p } 

U { ( m , 5 n * 7 p ) : n £ l N + A mSp} . 

Thus, 

Ro(IdV3V) n 5 o ( y V 3 K ) = { ( m , 2 % 3 I , ) : m i J n A mSp} 

U{(m,5n*7p):mRn A m 5 p } 

= R¥.3S . 

Then, (2l3, V3) |= Ax. 8. 
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Given binary relations T, Q C 1N+ x 1N+, 

(TV_3Q)~ = { (2™ * 3P, m) : m l n A mQp } 

U { ( 5 n * 7 p , m ) : m T n A mQp} . 

Then, 

( £ Y 3 S ) o ( T V 3 g r 

= {(a,b) : 3c,d(a.Rc A aSd A bTc A &Qd) } 

= {(a,6) : 3c(ai?c A 6Tc) A 3d(aSd A 6Qd)} 

= | (a, 6) : 3c(ai?c A cfa) A 3d(aSd A dQ6) j 

= [ (a, 6) : 3c(aRc A c f a ) } n [ (a, 6) : Bd(aSd A dQb) } 

= RoT nSoQ . 

Thus, (2l3, V3) |= Ax. 9. 
Let us show now that Ax. 10 does not hold in the structure (2l3, V 3 ) . 
By definition of V 3 , 

{IdV3V)~ = { (2m * 3", m) : m, n e 1N+ } 

u { ( 5 m * 7 " , m } : m , n € l N + } 

and 

( V S 3 Jd)~ = { (2" * 3 m , m) : m, n £ JN+ } 

u { ( 5 n * 7 m , m ) : m , n e ! N + } . 

Then, the relation { (2m * 3", 5 m * 7") : m, n G 1N+ } is contained in 

( ^ Y 3 t O ~ V 3 ( y V 3 / d r . Thus, ( / d V ^ r V 3 ( V V 3 / d ) ~ £ id. 
Let us now prove that Ax. 9 is independent from Ax. 8 and Ax. 10. 
In the proof of Lemma 4.2, Ax. 9 is used when proving that F is a total 

and injective binary relation. Since only Ax. 9 is used when proving these 
properties, violating any of them should provide good examples of algebras 
satisfying Ax. 8 and Ax. 10 but not Ax. 9. In order to violate the injectivity, 
let us consider the relation F C (IN x IN) x IN defined by 

F = {({x,y),0):x,yeN} . 
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If we define 2l2 := 9*e (IN) and define for arbitrary binary relations R,SC 

W x N 

flY2S = {(m,F(n,p)) : mRn A m 5 p } , 

it is trivial to show that 

(1) RV25 = { (m, 0) : m £ dom (R) A m e dom (5) }, 

(2) (2l2, Y 2 ) |= {Ax. 8, Ax. 10} but (2t2, V2) ^ Ax. 9. 

In a similar way, if we want to violate the totality of F, we can define 

F = { ((m, m) , m) : m e IN } . 

In this case it is easy to check that 

(1) RV_2S = RnS, 
(2) (2l2, V2) |= { Ax. 8, Ac. 10 }, but (2(2, V2) ^ Ac. 9. 

But, probably, the easiest way to prove that Ax. 9 is independent of the 
other axioms is defining* F = 0. In this case, -RV25 = 0 for all binary 
relations R, S C IN x IN. It is trivial to prove that (2l2, V2) |= Ax. 8 and 
(2l2, V2) [= Ac. 10. On the other hand, (VV2V) o ( V V 2 7 ) = 0 ^ V = 
(Vo V) n (Vo i?). Thus, (2l2, V2) ^ Ac. 9. 

Finally, let us consider the most interesting case, in which we prove that 
Ax. 8 is independent from Ax. 9 and Ax. 10. In Lemma 4.2, Ax. 8 is used 
in order to show that V is definable in terms of the relations (1'VI)" and 
(1V1')". This suggests that Vx can be defined by cases, giving ad-hoc 
definitions for IdV_xV and VV17d. 

Let U = { a }, and let (£/*,*) be the free groupoid with set of generators 
U. Let &i := fHe (£/*). The binary operation V defined by RV_S = 
{(x,y*z) : xRy A xSz} satisfies axioms Ax. 8-Ax. 10. Let us define the 
operation V_1 as follows: 

J ( f lV5) U Ida iiR = Id and S = V, 

I RV_S otherwise . 

The relation Ida is defined by Ida — { (a, a)}. Let us start by showing 
that, in effect, (»i , V_i) ^ Ax. 8. Notice first that IdV.iV = (IdWV)Ulda. 

tThis was called to my attention by Paulo Veloso in a private communication. 

http://IdV.iV
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On the other hand, 

{Ido (Id^V)) n (Vo (VWJd)) 

= (IdYiV) n (Vo (VYJd)) 

= ((Id¥_V) u Ida) n (Vo (VYld)) 
= [(Id%V) n (Vo (VVId))) U [Ida n (Vo (VVId))] . 

Let us analyze relations A and B. Regarding A, since Vo (VV/d) 2 
WVV, A = IdVV. For relation £ , since the range of 1'0 is contained in 
U, and the range of Vo (FVW) is contained in U* \ U, B = 0. Thus, 

(Ido (IdV.iV)) n (Vo (VVJd)) = IdVV . 

Since JdVV ^ (IdVV) U 7d0, (2li, Vx) ^ Ax. 8. It only remains to be 
shown that axioms Ax. 9 and Ax. 10 are satisfied in (2li, Vj) . 

That Ax. 10 is satisfied is easily checked as follows: 

(Id%.iV)~Yi(VVi/d)^ = ((WVV) U / d 0 ) w S i ( ^ Y W ) w 

= ((IdVV) U / 4 ) ^ Y ( F V W ) ^ . 

Since V is additive, 

((KVV) u iday v(vvid)~ 
= l(IdVV)~V_(VV_Id)~}U[IdaV_(VV_Id)~} • 

By Ax. 10, A < Id. For relation B, since the domain of Ida is contained 
in U and the domain of (V V Jd)~ is contained in {7* \ [/, i? = 0. Thus, 

( W Y i V 0 ~ Y i ( ^ Y i A 0 ~ C Id , 

as was to be shown. 
Let us check at last that Ax. 9 is also satisfied. Notice that by definition 

of V !, we can always write RV_iS as (RV_S) U a, where a can take the 

http://IdV.iV
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(by Def. Vj) 

values Ida or 0. Given R, S,T,QCU* xU*, 

( f lY iS )o (TYiQ)~ 

= ((.RVS) U a) o((TVQ) U /?)~ 

= ( i ? V 5 ) o ( T V Q ) " U a o ( T V Q r 

U (flVS) o ^ U a o ^ . (V additive) 

Since ran (a) and dom ((T^Q)^) are disjoint, ao(TVQ)"" = 0. Also, 

since ran (RV_S) and dom(/3) are disjoint, (RV_S) o /?= 0. Thus 

GRVjS) o ( T V j Q ) ^ = (flVS) o ( T V Q ) ^ U ao /3 

(by previous discussion) 

= ( # o T n S o Q J u a o ^ . (by Ax. 9) 

The following table shows the pairs of values (a, /3) for all possible values 
of R, S, T and Q. 

{R,S) 

(Id,V) 

other 

{Id, V) other 

(Ida, Ida) (Ida,Q) 

(0, Ida) (0,0) 

In the case (R,S) = (Id,V) and (T,Q) = (Id, V), ao (3= IdaoIda = 
Ida. Then 

( # 0 T n So Q\ u a o /3= (/d r\V)l)Ida = Id = RoT nSoQ . 

For the remaining cases, notice that ao /?= 0, and thus 

(RO T n So Q\ U ao^^RoT nSoQ . 



Chapter 5 

Interpretability of Classical 
First-Order Logic 

Classical first-order logic is a formalism suitable for the specification of 
certain views of systems. It has a good expressive power and is relatively 
easy to understand by non mathematicians. Since we are establishing the 
foundations of a calculus for system specification and verification using rela­
tional methods, it seems natural to study the relationship between classical 
first-order logic and the fork algebra calculus. Actually, as part of the soft­
ware development process we will translate (interpret) classical first-order 
specifications into relational specifications. Such translation has to be well-
behaved in some sense. A possible way to formulate this good behavior is 
by requiring the translation to be semantics-preserving. In this chapter we 
will define the translation from classical first-order logic to the fork algebra 
calculus, and prove the semantics-preservation theorem. 

5.1 Basic Definitions 

Tarski denned in [A. Tarski (1941)] the elementary theory of binary rela­
tions as a logical counterpart of the class of algebras of binary relations. In 
a similar way we will define an elementary theory of fork relations (ETFR 
for short) having as target the definition of the class of proper fork algebras. 

Definition 5.1 Given a set of constant symbols C and a set of function 
symbols with arity F, the set of individual terms on C and F (denoted by 
IndTerm(C,F)) is the smallest set A satisfying: 

(1) IndVarUCCA, 
(2) If / G F has arity k and t\,..., tk G A, then f(ti,..., tk) € A . 

49 
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Definition 5.2 Given a set of constant relation symbols P, the set of 
relation designations on P (denoted by RelDes(P)) is the smallest set A 
satisfying: 

(1) RelVar U { 0,1,1' } U P C A, 

(2) If R, S e A, then (pL,Pi,R+S,R-S,R;S,RVs\ CA . 

Definition 5.3 Let u be a symbol, then u* is the smallest set A satisfying: 

(1) UGA, 

(2) if x, y £ A, then the expression *(x, y) also belongs to A. 

Elements of u* are called arities. The arity *(u, *(u, • • •)) with k occurrences 
of u will be denoted by the number k. We will in general write u * • • • * u 
(k occurrences of u) instead of *(u, *(u, •••)). For instance, 

4 = *(u, -k(u, *(u, u))) — u*u-ku*u. 

Definition 5.4 Given a set of constant symbols C and a set of function 
symbols F, by IndTerm(C, F)*, we denote the smallest set A satisfying: 

(1) IndTerm(C,F)CA, 
(2) If *i,*2 6 A, then *{ti,t2) € A . 

Definition 5.5 Given t G IndTerm(C,F)*, the arity of term t (denoted 
by arity(t)) is inductively defined as follows: 

(1) If t e IndTerm(C,F), then arity(t) = u, 
(2) If *i,t2 e IndTerm(C,F)* and £ = *(t i , t2) , then 

arity(t) — *{arity{t{), arity{t^)) . 

Definition 5.6 Given a set of constant symbols C, a set of function 
symbols F and a set of constant relation symbols P, the set of atomic 
formulas of ETFR is the smallest set A satisfying: 

(1) R = S G A whenever R, S € RelDes(P), 
(2) t1Rt2 € A whenever *i , i2 € IndTerm(C, F)* and JR € RelDes{P). 

From the atomic formulas, compound formulas are built as in first-order 
logic, with quantifiers applied only to individual variables. Notice that once 
the sets C, F and P are fixed, a unique set of formulas is characterized. 
We will denote this set by ForETFR(C, F, P). 
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Definition 5.7 Given a set of constant symbols C, a set of function 
symbols F and a set of relation constant symbols P, we define the formalism 
ETFR(C, F, P) as follows: 

Formulas: ForETFR{C, F, P). 
Inference rules: Same as in ETBR. 
Axioms: Extend the axioms of ETBR by adding formulas (3.2) and (3.3). 

Much the same as Tarski defined his calculus of relations from the ele­
mentary theory of binary relations, we will define a calculus of fork relations 
(denoted by CFR) from the elementary theory of fork relations. 

Definition 5.8 Given a set of relation constant symbols P, we define the 
formalism CFR(P) as follows: 

Formulas: Those formulas from the ETFR in which neither individual vari­
ables nor constant symbols occur (i.e., Boolean combinations of 
equalities between relational designations). The set of formulas for 
CFR(P) will be denoted by ForCFR(P). 

Inference rules: Same as in CR. 
Axioms: Extend the axioms of CR by adding formulas (Ax. 8)-(Ax. 10) 

from Def. 3.4. 

In this and the remaining sections, given sets C, F and P we will denote 
by FOLE(C, F, P) the first-order logic with equality on the language with 
set of constant symbols C, set of function symbols F and set of predicate 
symbols P. 

5.2 In te rp re t ing FOLE 

In order to fulfill the task of interpreting FOLE, we will perform an inter­
mediate step. First we will show how to interpret FOLE into ETFR, and 
after doing this we will show how to interpret ETFR into CFR. 

The algebraization of logics is a field of extensive and active work. In 
the remaining part of this chapter and the next one we will show how fork 
algebras can be used to interpret classical first-order logic, as well as many 
non-classical logics. The reader interested in the algebraization of logics 
should consider reading the book [L. Henkin et al. (1985)] (in particular 
Section 4.3, which studies the connections between cylindric algebras and 
logic, and Ch. 5, in which other algebraizations are presented), and also the 
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book [P. Halmos (1962)]. Also fundamental are the works of the Budapest 
school, specially the papers [H. Andreka et al. (1994); H. Andreka et al. 
(1993); H. Andreka et al. (1981); I. Nemeti (1991)]. Finally, the work of 
Blok and Pigozzi (see [W. Blok et al. (1989)] and the references therein) is 
a very valuable source of results in algebraic logic. 

Notice that in FOLE(C,F,P) there is a standard notion of arity for 
function and predicate symbols. We will also assume that function and 
constant relation symbols from ETFR(C, F, P) have an associated arity. 
Arity of functions is defined as usual. For constant relation symbols the 
arity is defined as a pair (01,02) where 0,1,0,2 £ u*. Arity a\ is called the 
input arity and 02 is called the output arity. The reason for doing this is 
that in in the process of problem specification we will convert first-order 
predicates into input-output binary relations. To this syntactic definition 
of arity also corresponds a semantic notion. 

Definition 5.9 Let 21 € PFAU. We define arity : [7a -> u* by: 

(1) If e £ Urel<n, arity(e) = u, 
(2) If e = *(ei,e2), arity(e) = *(arity(ei),arity(e2)). 

Note that the arity function is partial, since there might be elements in 
U<& that are not finitely generated from urelements and for which Def. 5.9 
does not produce a well defined arity in u*. 

Definition 5.10 Given a PFAU 21, a binary relation R £ 21 has arity 
(ai,a2) (ai ,a2 G u*) if 

R Q { (x, y) £ U% x U<& : arity(x) = a\ A arity(y) = 02 } . 

Given objects a\,..., a^, a\ ,..., a*/ and a finite set A = {a\ , . . . , a^ }, 
by A' we denote the set { a,i,..., a*/ }. 

Given a finite set of symbols A = { a\,..., a^ } and a structure A, by 
AA we denote the set { a\A,..., a^ } of the interpretations of the symbols 
in the structure A. 

We will define the semantics of ETFR(C, F, P) in terms of square proper 
fork algebras with urelements. The definition is as follows. 

Denni t ion 5.11 An adequate structure for ETFR(C, F, P) is a structure 
A = ( 21, CA, FA, PA ) satisfying: 

(1) 21 e SPFAU, 
(2) For each c € C, cA S Urel*, 
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(3) For each / G F of arity Jfc, fA : I7refa
fc -» tfrefe, 

(4) For each p g P o f arity (ai ,a2) , p-4 G 21 has arity (ai,a2) . 

Definition 5.12 Given 21 € PFAU, a mapping v : IndVar —• [/re/a is 
called a valuation of individual variables. If x £ IndVar, by i/[x/a] we 
denote the valuation defined by: 

a if y = x . 

Definition 5.13 Given a structure A = ( 21, CA, FA, PA ) adequate for 
ETFR(C, F, P) and a valuation of individual variables v, we define the map­
ping Vv giving meaning in A to terms of IndTerm(C, F)* as follows: 

(1) VI/(x) = v(x), for each individual variable x 
(2) Vv(c) = c-4, for each c G C 

(3) K( / (* i , • • •, *fe)) = fA{V»{ti), • • •, K(tfe)) for each / € F 
(4) Vv{*(t,f)) = *(Vv(t),Vv(t')) 

Definition 5.14 Let A = ( 2 1 , C A , F A , P A ) be an adequate structure 
for ETFR(C,F,P), and let m : RelVar —> A The pair (A,m) is called 
a model of ETFR(C, F, P) . Mapping m extends homomorphically to com­
pound relational designations. In order to simplify the notation, m will 
also denote the homomorphic extension. 

Definition 5.15 Given <p G ForETFR(C,F,P) and a valuation for the 
individual variables v, we say that v satisfies the formula <p in the model 
M = ( { 21, CM, FM, PM ) , m ) (denoted by M, v (=ETFR <f) whenever: 

- If 95 = t1pt2 with p G RelDes(P) and *i,*2 € IndTerm(C, F)*, 

M,v H T F R V iff (K(*i),K(*2)} G m(p) . 

- If <p = -ia, 

X , ^ h=ETFR f i f f A l , f Ĵ ETFR OL . 

- If <p = aV/3, 

M, V |=ETFR V ^ A t , 1/ ^=ETFR aoi M,U |=ETFR /? • 

- If V? = a A /?, 

At , ^ |=ETFR V iff At , ^ HETFR <* and .M, z/ |=ETFR P • 

v{x/a]{y) 
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- If (f = 3xa, 

•M, v |=ETFR 3xa iff 

there exists a G Urel<& such that M, v[x/a] |=ETFR a . 

- If (f = Vxa, 

M, v |=ETFR Vza iff 

for each a £ Urel^, M, v[x/a] |=ETFR
 a • 

The following mapping translates formulas from FOLE(C,F,P) into 
formulas of ETFR(C, F,P'). We will denote by ForFOLE(C,F,P) the set 
of formulas in FOLE(C, F, P). 

In order to simplify proofs, from here on given a first-order predicate 
symbol p £ P with arity k, we will assume that the arity of p' € P' is 
(n, m) (n, m € IN) with n + m = k. Moreover, we will assume that the 
first n parameters from p will be input parameters of p' and the last m 
parameters from p will be output parameters of p'. 

Definition 5.16 We define the translation TV mapping formulas from 
ForFOLE(C,F,P) to ForETFR(C,F,P') inductively as follows: 

(1) Tv{p{tx,.. .,tn,t[,.. .,t'J) = * ! * • • • * tnP't[ *---*fm,ifpsP 
and p' has arity (n, m). 

(2) T v ( * i = t 2 ) = t i l ' t 2 , 
(3) Tv(-,a) = -,Tv(a), 

(4) T v ( a V / 3 ) = T v ( a ) v T v ( / 3 ) , 
(5) T v ( a A / 3 ) = T v ( a ) A T v ( / 3 ) , 
(6) Tv(3xa) = 3xTx/(a), 
(7) Tv(Vxa)=\/xTv{a). 

Given a first-order term t and a valuation of variables v into a FOLE 
model 21, by V l /(t) we denote the value of t under the valuation v in the 
model 21. 

Lemma 5.1 Let <j> e ForFOLE(C, F, P). Given a FOLE(C, F, P) model 
21 with domain A, there exists a ETFR(C, F, P') model B such that for every 
valuation of the individual variables v 

21,v \=FOLE 4> <^=> B,v N T F R TV{$) . 
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Proof Let 23 be the full fork algebra with set of urelements A. Define, 
for c £ C and / £ F , cB = c% and / 8 = / a . Define, for p € P of arity n 
and p ' £ P' of arity (r, s) with r + s = n, 

p' = {(a i*- - -*o r ,6 1 *-- -*6 J S > : p a ( o i , . . . , a r , 6 i , . . . , 6 s ) } . 

Let m : iZeZVor -> B be arbitrary, and let B = ((fB,CB,FB,P'B),m). 
It is clear that 

Vt € IndTerm(C,F), Vv(t) = V„(<) . (5.1) 

Let us proceed by induction on the complexity of the formula (p. 
Given p £ P of arity k, p' £ P' of arity (r, s) and t\,..., tr, t[,..., t's £ 

IndTerm(C,F), 

21 \=FOLE p(h, • • • ,tr,t[,... ,t's) 

{ by Def. (=FOLB } 

{V,(«1),...,v1/(tr))v1/(t'1),...,v„(aepa 

{ by Def. p'B } 
( V ^ ) * • • • * V„(t r) , V„(ti) * • • • * V„(f,)> G p ' S 

{by (5.1)} 

(K(*i) * • • • * K(«r), K W ) * • • • * Vu{t's)) £ p'B 

{by Def. HETFR} 

B, V |=ETFR * ! * • • • * trp't[ *•••*?„ 

< ^ {Def. T v } 
B,v HETFR T V ( P ( * I , . . . , t r , t i , . . . , t ' a ) ) . 

The remaining part of the inductive proof is simple and is left to the 
reader. • 

Lemma 5.2 Let <j> £ ForFOLE(C,F,P). Let A be a ETFR(C, F,P') 
model. Then there exists a FOLE(C, F, P) model <8 such that for every 
valuation of the individual variables v, 

A, v |=ETFR TV (</>) «=> 03, v \=FOLE <f> • 

Proof Let A = / / 2 1 , C A , F A , P ' A V m \ . Let us define B, the universe 

of 03, as Urel%. For each c £ C and / £ F, we define c33 = c* and 
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Z23 = fA- For each p' G P' of arity (r, s) we define 

jr8 = J ( a i , . . . , a r , 6 i , . . . , 6 s ) : (ax * • • • * ar,bx * • • • * bs) G p'A j . 

Let 05 = ( B, C25, F*, P s ). It is clear that 

Vi G 7ndrerm(C, F) , V^i) = V„(i) . (5.2) 

Let us proceed by induction on the complexity of the formula <t>. 
If 4> =p{t\,... ,tr,t[,... ,t's) with p G P, then 

A"(=ETFRrv(p( t l , . . . , t r ,* i , . . - ,* i ) ) 
{byDef. T v } 
A f |=ETFR «l • • • • * t rp'*i *•••**', 
{byDef. ^ E T F R } 

(V^tt) * • • • * Vv{tr), Vv(t\) * • • • * Vv(t'r)) G p'"4 

{ by Def. p* } 
(vv(h),..., K(M, W) , . . . , K O G p* 

«=* {by (5.2)} 
<v„(*o,..., v„(tr), v,(t'o,..., v „ o G P

s 

4=> {byDef. |=FOLE } 

23,y hFOL£P(* i , . . . , t r , t i , - . . ,* i ) • 

The remaining part of the inductive proof is simple and is left to the 
reader. • 

The next theorem proves the interpretability of classical first-order logic 
with equality into the elementary theory of fork relations. This will serve 
as an intermediate step in the proof of interpretability of classical first-
order logic into the calculus of fork relations. Notice that since first-order 
predicate symbols do not divide arguments between input arguments and 
output arguments, this intermediate step arises naturally in the process of 
translating specifications to the calculus of fork relations. 

By \=FOLE <t> we will denote the fact that formula <fr is valid in FOLE. 
In a similar way we say that a formula (f> from ETFR is valid in ETFR if 
for each ETFR model A and each valuation v of the individual variables, 
A, v (=ETFR </>• 

Theorem 5.1 Let <j> be a FOLE(C,F,P) formula. Then 

\=FOLE 4> « = > |=ETFR T V ((f)) . 
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Proof 
=>) If J^ETFR Ty (</>), then there exists an ETFR(C, F, P') model A and a 
valuation of individual variables v such that A, v J^ETFR ?V {(p). Then, by 
Lemma 5.2, there exists a FOLE(C, F, P) model 03 such that 03, v Y^FOLE 4>-
Then, PFOLE <P-
4=) H^FOLE <t>, then there exists a FOLE(C, F, P) model 21 and a valuation 
of individual variables v such that 21,^ ^FOLE <fr- By Lemma 5.1 there 
exists a ETFR(C,F,P') structure B such that B,v ^ E T F R Tv(<f>). Then, 
* E T F R T V (</>)• D 

In the remaining part of this section we will show that ETFR(C, F, P) 
can be interpreted into CFR(A) for a suitable set of constant relation sym­
bols A. Finally, by exploiting the relationship which exists between CFR(A) 
and abstract fork algebras we will show how to reason algebraically in order 
to prove logical properties from FOLE and ETFR. By l'{j we denote the 
relation l 'u® • • • ®l'u-

v v ' 
k times 

Given sets C, F and P consisting of constant, function and relation 
symbols respectively, by K we denote the set C'UF'UP'. By CFR+(i^) we 
denote the extension of CFR(i^) obtained by adding the following axioms: 

(1) The formula 

l ; l ' u ; l = l, 

which implies that models of CFR+ are abstract fork algebras with 
a nonempty set of urelements. 

(2) For each c € C, we add the following equations stating that c' is a 
constant relation having a urelement in its range: 

c';c' + l'u = l'u (c' is functional), 

1; c' = c' (c' is left-ideal) , 

c ';l = 1 (c' is nonempty). 

(3) For each f £ F with arity k, we add equations stating that / ' is a 
functional relation that takes k urelements as input and produces 
urelements as output: 

/ ' ; / ' + l'u = l'u, 

i'5;/' =/'• 
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(4) For each p £ P with arity (m, n), the following equations stating 
that p' is a binary relation expecting m urelements as input and n 
urelements as output: 

1 u >P ' l u — P • 

In (3) and (4) we are assuming that / ' has input arity k and that p' 
has arity {m,n}. We can generalize to arbitrary arities by rearranging 
parenthesis in a convenient way. For example, if p' is a relation constant 
whose arity is ((u * u) * [u * u), (u * u) * u), we would impose the condition 

Note that given a finite set K with constant, function and relation 
symbols, only a finite number of equations are introduced in (l)-(4) above. 

In what follows, t'n is an abbreviation for t\ • • • ;t (n times). For the 
sake of completeness, i ; 0 is defined as 1'. 

Prior to defining the mapping translating ETFR(C, F, P) formulas into 
CFR+(K) formulas, we will translate individual terms to relation designa­
tions. This is necessary when translating atomic ETFR(C, F, P) formulas 
of the form tRt', with t,t' e IndTerm(C,F)* and R e RelDes(P). 

For the following definitions, a will be a sequence of numbers sorted in 
increasing order. Intuitively, the sequence a contains the indices of those 
individual variables that appear free in the formula (or term) being trans­
lated. By Ord(n, a) we denote the position of the index n in the sequence 
a, by [a © n] we denote the extension of the sequence a with the index n, 
and by a(k) we denote the element in the fc-th position of a. 

Definition 5.17 The mapping 8a : IndTerm(C, F) -> RelDes(C U F'), 
translating individual terms into relation designations, is defined induc­
tively by the conditions: 

. . . . . I/>:°rd(»>(7)-1;7r if i is not the last index in a, 
(1) oa{vi) = < 

^p;Length(*)-l o t h e r w i s e . 

(2) Sa(c) = c' for each c£G. 

(3) M / ( * i , • • •.*m)) = (M*i )V • • • V ^ ( t m ) ) ; / ' for each f e F. 

Before defining the mapping Ta translating ETFR formulas, we need to 
define some auxiliary terms. Given a sequence a such that Length(a) = I, 
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we define the term ACT)n (n < w) by the condition 

'M*vi))v • • • V ^ K ^ - D ) viu v<5CTK(fc)) v • • • v^Kro) 
Aff,n = •( if & = O d ( n , [a ® n]) < /, 

k M M i ) ) V • • • V5«r(«a(i)) Vlu if Ord(n, [o- © n]) = J + 1. 

The term ACT,„ can be understood as a cylindrification [L. Henkin et al. 
(1971); L. Henkin et al. (1985)] in the fc-th coordinate of an /-dimensional 
space. 

For the next mapping to be correctly defined, we assume that atomic 
formulas of the form R = S do not occur in the scope of a quantifier over 
individual variables. This is a reasonable assumption because, since atomic 
formulas of this form do not contain any individual variables, they can be 
promoted outside the scope of quantifiers. We will keep this assumption 
for the remaining part of the chapter. 

Definition 5.18 We define the mapping TCT translating ETFR(C, F, P) 
formulas to CFR+(K) formulas as follows: 

(1) Ta{R = S) d= R = S (R, S £ RelDes{P)), 

(2) Ta{ti*---*trRt'l*----kt's) =f 

T'a{h * • • • *t r i2*i * • • • * O = l 'u;! . 

(k = Length(a), U,^ e IndTerm(C,F) for all i,j, 1 < i < r, 
1 < j < s and R € RelDes{P)), 

(3) Ta{-,a) A^ -iTa(a), 

(4) TCT(aV/3) d=lf TCT(a)VTff(/3), 

(5) T^aA/3) =f TCT(a)ATff(/?), 

(6) Ta(3vna) d= T^vna) = V^,l,(k = Length(a)), 

(7) T a (W n a) =f TWvna) = vb;l,(k = Length(a)), 

(8) T'a(tl*----ktrRt'l*----kt's)
 d= 

((*a(ti)v-.-v^(tr)) v wtDv-VMti));*)^;^ (5-3) 
def 

(9) T^a) ^ T>(a), 

(10) n(aV(3) d^f TUa)+U(/3), 

(11) n(aA(3) ^ Ta{a)-T'a{p), 
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(12) T^vn(a)) ^ A a , „ ; ^ e n ] ( a ) , 

(13) T^vn(a)) dM T^3vn-^a). 

In (8) we are assuming that R has arity (r, s) (r, s £ IN). If we allow for 
arbitrary arities, then the parenthesis in formula (5.3) must be rearranged. 
For example, if R has arity ((u * u) * (u * u), (u * u) * u), then 

TU(ti * t2) * ( i3 * t4,)R(t5 * t6) * t7) 

= (((<5<r(«l)V^(t2)) V (M*3)V<5„(t4))) V ((<5„(t5)V«5<r(t6)) V<M<7)) ;&) ; 2 ;1 . 

Given a valuation of individual variables v and a sequence of indices a, 
by Si/,<r we denote the object a\ * • • • * a^ * • • • * an where: 

(1) n = Length(a), 
(2) a, = u(va(i)) for all i, 1 < i < n. 

Given a formula or term a, by aa we denote the sequence of indices of 
variables with free occurrences in a, sorted in increasing order. 

Lemma 5.3 Let a £ ForETFR(C, F, P) not containing any atomic sub-
formula of the form R = S, let a = aa and let A be a ETFR(C, F, P) model. 
Then there is a CFR+(.£Q model B = { ( 03, CB U FB U PB ) , m! ) such that 

A v HETFR a <=> s„i0. £ dom (m' {T'a(a))) . 

Proof Assume A = ( ( 21, CA, FA, PA ) , m ). Let us define B as follows: 

(1) Since 21 £ SFullPFAU, let 23 £ FullPFAU such that 21 £ S { 03 }, 
(2) c e = { (x, c-4) : x £ U* }, for each c£C, 
(3) / B = {(a1*---*an,b) : fA(au... ,an) = b}, for each / £ F, 
(4) pB = pA, for each p £ P , 
(5) m'(R) = m(R) for each R £ RelVar. 

It is clear that individual terms denote functional relations. Given 
a functional binary relation / and an element a, by [/](a) we denote 
that element b such that (a,b) £ / . We will prove next that for any 
term t £ IndTerm(C,F) and any sequence o that extends at, Vv{t) = 

Let t = V{ £ IndVar. If i is the last index in a, then K,(i>j) = v{vi) — 
\pLenBthW-l\{sv,a) = [m1 (Sa{vi))](sUt<7). If i is not the last index in a then 
Vv{vi) = i/fo) =' \p0rd(-i,a)-x\*]{sv,a) = [m'{5a(vi))](s,,ta). 

Let t = c £ C. K(c) = c 4 = [cB](sy,ff) = [m' (c)](a„ilT). 
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Let t = f{tu...,tk). Vv{f(tlt...,tk)) = fA{Vv(h),...,Vv(tk)). By 
inductive hypothesis 

Vv(ti) = [m' (Sa(ti))](su>(T) for al i i , 1 < i < k . 

Then, 

fA(yv(t!),...,Vv(tk)) 
= fA([m' (5a(*l))]K«r) , • • • , K (<Jff(tfc))]K«r)) 

= [/5]([m'(J<7(ti))](3v,ff) *•••* [m'ft ,( t f c))]K f f)) 

= [m ' ( ( (^ ( t 1 )V-- -V^( t J f c ) ) ; / ) ) ] (^ , ( 7 ) 

= [m'(^( / (« i , . . . , t fc) ) ) ] (*^)-

The remaining part of the proof follows by induction on the structure 
of the formula a. Notice that since m(R) = m'{R) for all R £ RelVar, then 
for every S £ RelDes(P) we have m(S) = m'(S). 

If a = ti * • • • *trRt[ ic---kt's, then 

A,v [=ETFR*I *---*trRt[ * • • • * £ , 

<=» {Vv{h) * . . . * Vv(tr), Vv(t{) * • • • * VV{Q) £ m (R) 

[m' (k(* i ) ) ] (^) * • • • * K (*aO]K<0> S m (i2) 
( K (5ff(tl))](a„1<7) * • • • * [m' (M*r))](*«vr)> 

K (M*i))](^) * • • • * K (<M*i))](̂ ,<0> G m' (R) 

sv,a £ dom((m' (Jff(*i)) V • • • Vm' ($,(*,•))) 

V ((m' (<*,&)) V • • • Vm' («5„(0)) ; (m ' ( ^ ) r ) ; l ; l 

sv,a e dom fm' (Y(<5CT(ii) V • • • V<5CT(ir)) 

v ((M*i)V-VMO);*));^;i)) 

This concludes the treatment for atomic formulas. 
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If a = -i/3, then 

A, v |=E T F R - , /?<=» .4,1/ j ^ E T F R /? 

^ ŝ ,CT ̂  dom (m'(T^(/3))) 

a, , , G dom (m'(T^(/3))) 

(by m'(T^(/3)) right-ideal) 

s ^ G d o m j m ' J T ^ ) ) ) 

s ^ G d o m C m ' ^ H ? ) ) ) . 

If a = /3 V 7, then 

-4, " t=ETFR/3 V 7 

•4, ^ (=ETFR /3 or .4, " |=ETFR 7 

*„,„. € dom (m' (7£(/3))) or sVt<r G dom (m' ( ^ ( 7 ) ) ) 

S , ,C TGdom(m'(T; ( /3) )Um'(T^(7) ) ) 

S , ,C Tedom(m'(T^(/3) + r ; ( 7 ) ) ) 

<*=> V e d o m f m ' ^ V T ) ) ) . 

If a = 3uj/?, then 

-4,^ NETFR 3viP 

there is a G £/reZ<a such that ,4, i/[wi/a] J=ETFR /3 

there is a G Urel* s.t. sy[l;./a]i[o.ffii] G dom (m' ( T ^ (/?))) 

av<a G dom (m' (Aa,i) °m' ( V ^ , (/?)) ) 

«„,„• G dom ( m ' ( A ^ ; ! } ' ^ (/?))) 

*„ , „ G dom (m' ( ^ ( 3 ^ / 3 ) ) ) . 

a 
Lemma 5.4 Z>e£ a G ForETFR(C, F, P) not containing any atomic sub-
formula of form R= S. Let a = aa of length k. Let Abe a ETFR(C, F, P) 
model. Then, there exists a model B = ( ( 03, C e U FB U PB ) ,m! ) for 
CFR+(if) such that 

A HETFR a < = • B HCFR+ Z(a) = l ' f i ; 1 . 
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Proof Let B be defined as in Lemma. 5.3. 

A |=ETFR a <£=*> A, v |=ETFR
 a for all v 

•£=>• sv<a £ dom(ra'(T£(a))) for all i/ (by Lemma 5.3) 

<=^ m'(T;(a)) = l'fi;l 

<=» 5 ( = C F R + ^ ( « ) = 1'U;1-

a 
Lemma 5.5 Let a £ ForETFR(C, F, P), let a = aa of length k, and let 
Abe a ETFR(C,F, P) model. Then, there exists a CFR+(K) model B such 
that 

A |=ETFR « «=*• B \=CFR+ Ta(a) . 

Proof Assume A = ( (Ql,CA,FA,PA) , m ) . Let B be defined as in 
Lemma 5.3. 

If a is R = S with fl, 5 £ RelDes(P), then 

.4 HETFR R = S <;=$• m{R) = m(5) 

«=*> m'(fl) = m'(5) 

<=> B hcFR+ R = S 

<=• B |=CFR+ r f f(fl = 5). 

If a is t\ * • • • * t r E t j * • • • * t's, then 

A |=ETFR*I *---*trRt'1-k----kt's 

^ B f=CFR+ T'a{a) = l'ft-,1 (by Lemma 5.4) 

^=* 6 K F R + Ta{a). 

If a is -i/3, then 

^ N T F R - / ? <̂ => ^ E T F R / ? 

<=* B*CFR+T f f(/3) 

<=» B HCFR+ -T.tf) 

<=» B hcFR+ r f f (^) . 
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If a is p V 7, then 

A HETFR P V 7 4=» „4 |=ETFR /? or .4 |=ETFR 7 

^=> B K F R + W ) or B (=CFR+ T„(7) 

<=^ ShcFR+^(/3)vTCT(7) 

<=^ BhcFR+^( /3V 7 ) . 

If a is 3^/3, then 

•A |=ETFR 3«»/3 

«=* B f=CFR+ 7£(3v4/?) = 1'g; 1 (by Lemma 5.4) 

<=> B h c F R + Ta{3Vip). n 

Definition 5.19 Let i? be a set of constant relation symbols. A CFR+(i?) 
model A=((%RA),m) is called square if 21 G SPFAU. 

Given 21 G PFAU, s = ai * • • • * ak (a* € Urely, for all i, 1 < i < A;) 
and a sequence a of indices increasingly sorted and of length k, by vs<a we 
denote the set of valuations of individual variables v satisfying v(vai^) = aj. 
Valuations in va%a agree in all those variables whose indices occur in a. 

Lemma 5.6 Let a G ForETFR(C, F, P) not containing any atomic sub-
formula of form R — S, let a = o~a and let A be the square CFR+(K) model 
((Ql,CAUFAUPA),m). Then, there exists a ETFR(C,F,P) model B 
such that 

s € dom (m {T'a{a))) <*=> B, v (=ETFR a for all v G i/s<a. . 

Proof Let B be constructed as follows: 

(1) Since 21 G S FullPFAU, let 58 G FullPFAU such that 21 G S { 93 }. 
(2) For each c G C, if c"4 = { (x, a) : x G f/gi}, define cB = a. 
(3) For each / G F of arity k, 

fB(a1,...,ak) = b <=> (ai * • • • * ak,b) G fA . 

(4) For each p G P we define p B = p ^ . 

(5) We finally define m'(R) = m(.R) for all i? G fle/Var. 

We will first prove, as an auxiliary result, that for every term t, 

[m (8a(t))] (s) = Vv(t) for all v G v,t<r . 
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If t = Vi G IndVar and i is the last index in a, 

[m(5a(„,))] (5) = [m ( p W ^ ) - i ) ] ( s ) 

$ Length{a) 

= Vv{vi) for all f G i/„)<r. 

If £ = Vi G IndVar and i is not the last index in a, 

[m(6a(Vi))} (s) = [m ( V ^ ^ - V ) ] (*) 
= SOrd(i,a) 

— Vv(vi) for all J/ G v3%IT. 

lit = c £ C, then 

[ m ( ^ ( c ) ) ] ( S ) = [ c ^ ] ( S ) 

= K,(c) for all 1/ G vs,a-

If f = / (<! , . . . tk) with / G F , then 

[m ( ^ ( / ( t i , . . . tk)))\ (s) = [(m (k(*i)) V • • • Vm (k(t f c))) ;/•*] (s) 

= [fA]([m(6!T(t1))}(s)*...*lm(5lT(tk))}(s)) 

= [fA] (VAh) *•••* Vv(tk)) for all v G vs,a 

= f (K(*i), • • •, K(**)) for a11 " e ".,«• 
= K, (/ ( t i , . . . , tfe)) for all v G IA,,CT. 

Let us now prove the main result by induction on the structure of for­
mula a, i.e., we will prove that 

s G dom (m {T'a{a))) «=> B, v (=ETFR <* for all v G i/Si<r 

If a = ti * • • • * tmRt[ * • •••kt'n, t h e n 

s G 4om{m{T'(T{ti-k---*tmRt'1*---*tl
n))) 

s G dom (m ( ( ( ^ ( t i ) V • • • VS„{tm)) 

V (^(tiJv-.-v^cO);^)^;!)) 
([m(Sa(t1))}(s)*---*[m(Sa(tm))}(s), 

[m (k(*i))] (*)*•••* [m (MC))1 (*)> G ™ (i2) 
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<[m(*a(t i ) ) ] (s)*."*[m(M*m))](s) , 

[m (M*i))] {s)*.--*[m ( M O ) ] (^)) e m' (i?) 

(Vv(ti)*---*Vv(tm), 

^( t ' i ) * • • • * K ( 4 ) ) G mf (R) for all 1/ G v„i0 

<£=> £, 1/ [=ETFR *i * • • • * tmRt[ • • • • • i^ for all v G ^SjCT. 

If a = -i/3, then 

s G dom (m(T^p))) <̂ =» s G dom (m(2£(/jj)) 

s t dom (m (T^/?))) (by m (T^P)) right-deal) 

&, " ^ETFR P for some 1/ G i/Si<T 

#, 1/ J^ETFR P for all 1/ G vSy„ 

<=» B, ^ (=ETFR -•/? for all 1/ G vSt<T. 

If a = /3 V 7, then 

s G dom (m (T^/J V 7))) 

«=> s G dom (m {T'a{P))) or s G dom (m (T^(7))) 

-<=>• 23, v |=ETFR /? for all v G i/„)(T or B, v f=ETFR 7 for all v G ^,CT 

«=>• B, 1/ |=ETFR ^ V 7 for all v G i/S)(r. 

If a = 3viP, given s = a\ * • • • * a^ we will denote by Si%a the element 
a\ * • • • * a;_i * a * ai * • • • * a^. Then, 

sG dom (m ( T , ^ / ? ) ) ) 

^=> s G dom (mCA^) ;m ( V ^ , (/?))) 

there exists a G Urel% s.t. (s,Sja) G m (A^i) and 

S i , a G d o m ( m ( T ^ e i ] ( / 3 ) ) ) 

there exists a G Urel<x s.t. (s, Sj]a) G m(Ag-i) and 

B, V |=ETFR /? for all V G ^ ^ . k © * ] 

there exists a G f/re/a s.t. B, v[vi/a] |=ETFR P f° r all f 6 ^s.a 

«=> B, v |=ETFR 3UJ/3 for all v G I>SI<T. 

Lemma 5.7 Lei a G ForETFR(C, F, P) not containing any atomic sub-
formula of form, R = S. Let a = aa of length k. Let A be the square 
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Qr~R+(K) model { ( 21, CA U FA U PA ) , m ). T/ien, tfiere exists a mode/ £ 
/or ETFR(C, F, P) such that 

m(Z(a)) = Vk
v < = • fihTFR«-

Proof Let Z3 be constructed as in Lemma 5.6. 

m(Z(a)) = Vh
u 

s G dom (m (2£(a))) for all s € dom (l'{j) 

B,v\= a for all i/ G I/SJCT and s G dom (l 'u) (by Lemma 5.6) 

B, v \= a for all v 

B f=ETFR Ol. 

D 

Lemma 5.8 Let a e ForETFR(C, F, P), let a = aa of length k, and let 
A be a square CFR+(K) model. Then, there exists a ETFR(C, F ,P ) model 
B such that 

•A h=CFR+ Ta{a) «=» B |=ETFR a • 

Proof Let us assume that A = ( ( 21, CA U FA U PA ) , m ) . Let B be 
defined as in Lemma 5.6. 

Notice that since m = m', for all R G RelDesP we have m{R) = m'(R). 
If a is R = S with R,S e RelDes(P), then 

A hcFR+ TV (A = 5) «{=» .A HCFR+ # = 5 

m(i?) = m(5) 

m'(fi) = m'(S) 

B HETFR fl = S. 

If a is ti * • • • * tmRt\ *---*t'n, then 

-^ H=CFR+ T , T ( * l * - " * t m i t t i * • • • * * « ) 

<*=* .4 HCFR+ ^ ( * i * • • • *tmRif1 * • • • * < ) = I ' u J l 

«=>• i3 )=ETFR * i * - ••**m-R*i *• - - * 4 - (by Lemma 5.7) 
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If a is ->/?, then 

A (=CFR+ Ta{->P) «=> A K F R + - W ) 

< = • ^ ^ C F R + ^ ( / 3 ) 

«=>• S^ETFR/? 

«=>- B |=ETFR 1)8. 

If a is /? V 7, then 

-4 K F R + Ta[fi V 7 ) <=^ .4 (=CFR+ W ) V T f f(7) 

<=}• A |=CFR+ W ) or .4 HCFR+ ^ ( 7 ) 

« = > 6 |=ETFR P or H |=ETFR 7 

4 = > i B ( = / 9 V 7 . 

If a is 3vi(3, then 

.4 K F R + ^ (3^ /3) ^ A K F R + ^ (3^ /3) = l ' f i ; l 

<=> B (=ETFR 3^/3. (by Lemma 5.7) 

D 

Theorem 5.2 Let a £ ETFR(C, F, P) and let a = aa. Then, 

HETFR a «=>• | = C F R + X T ( « ) • 

Proof 
=>) If J^CFR+ rCT(a), then there exists a model A= ((2l,CA,FA,PA) ,m) 
with 21 £ SAFAU such that A 1^CFR+ Ta(a). From .4. we build a square 
model A' up as follows. Let 21' e SPFAU such that 21 3* 21' and / i : ,4 -> A' 
a fork algebra isomorphism (21' and h exist by Thm. 4.3). For each c £ C, 
let cA' = h{cA). For each f £ F, let / x ' = h(fA). For each p £ P , let p-4' = 
h(pA). Finally, for each R £ RelVar we define m'(R) = h(m(R)). It is clear 
that A' ^CFR+ ?V(a). Then, by Lemma 5.8 there exists a ETFR(C, F , P ) 
model B such that B J^ETFR ot. Then, ^ETFR &• 
<=) If )^ETFR 01 then there exists a ETFR(C, F, P) model A such that A J^ETFR 

a. Then, by Lemma 5.5 there exists a C F R + ( C U F u P ) model B such that 
BPCFR+ Ta{a). Then, Ĵ CFR+ Ta(a). D 

Theorem 5.2 shows that reasoning in ETFR can be replaced by reasoning 
in CFR+. The reason why this is considered an algebraization of ETFR is 



Interpreting FOLE 69 

because validity in CFR+ reduces to the verification of the validity of a 
formula in SAFAU. 

Theorem 5.3 Let a € ETFR(C, F, P) and let a = aa of length k. Then, 

NlFR <* «=> KFR+ Z(a) = l'fi . 

Proof 
=>) If >XFR+ T^a) = l'g then there exists a CFR+(C U F U P) model A = 
((%CA,FA,PA),m) with 21 e SAFAU such that AJ^CFR+ T'a(a) = l'fi. 
Prom .4 we build a proper model A' up as follows. Let 21' £ SPFAU such 
that 21 = 21' and h : A —> A' a fork algebra isomorphism (21' and h exist 
by Thm. 4.3). For each c£C, let c 4 ' = h(cA). For each / £ F , let J"-4' = 
h(fA). For each p £ P, let p-4 = ^(p-4). Finally, for each R £ RelVar we 
define m'(P) = h(m(R)). It is clear that .4' >*CFR+ T'„{a) = l'u- T h e n > 
by Lemma 5.7 there exists a ETFR(C, F, P) model $ such that B ^ETFR a. 
Then, J^ETFR a. 
<=) If -HETFR OL then there exists a ETFR(C, F, P) model A such that .4 J^ETFR 

a. Then, by Lemma 5.4 there exists a CFR + (CUFUF) model B such that 
B J^CFR+ T'a (a) = V *. Then *C F R + I£ (a) = 1' fi. • 

In order to obtain an algebraization of FOLE it suffices to compose 
the mappings Ty and T'a. The result of this composition is the mapping 
T v ,a : ForFOLE(C,F,P) -» ForCFR(C U F U P) . Recall that in order 
to apply the mapping Ty it is necessary to divide arguments of predicate 
symbols between input and output arguments. For the next theorem, and 
in order to simplify the notation, we will assume that all arguments are to 
be considered as input arguments. 

(1) Tv, g(p( t i , . . . , t f c)) = (gg(ti)V • • • V5a(tk)) ; P ' ; 1 , 
(2) r v , a ( - . a ) = T v , a ( a ) , 
(3) T v , f f(aV/3)=Tv, . (a)+Tv,C T( /3) , 
(4) Tv,CT(3w„a) = ACTi„;TVi[CTe„](a). 

By using the translation Tv,<r we can prove the following theorem. 

Theo rem 5.4 Let a £ ForFOLE(C,F,P) and let a = aa. Then, if a 
has length k, 

\=FOLE a «=>• |=CFR+ Ty,a(a) = l 'fi;! • 
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Proof By Thm. 5.1, 

\=FOLE OL •<==>• [=ETFR T"V ( a ) . (5 .4) 

By Thm. 5.3, 

N T F R T V ( « ) ^=> K F R + ^ ( T v ( a ) ) = l ' S ; l . (5.5) 

Joining (5.4) and (5.5) and the fact TVy!J(a) = T^(Tv(a)), 

\=FOLEa <=> K F R + TVi<T{a) = 1'S;1 . 
D 

Prom CFR+(P) we define the formalism CFREQ+(P) as a restriction of 
CFR+(P). CFREQ+(P) is defined as follows. 

Formulas: Equations from ForCFR+. 
Inference Rules: The following inference rules for equational logic: 

(!) I"CFREQ+ P = P, for every p € RelDes(P), 
(2) p = q I-CFREQ+ Q = P, for every p,q€ RelDes(P), 
(3) p = q,q = r hCFREQ+ p = r, for every p,q,r £ RelDes(P), 
(4) If I~CFREQ+ P = Q, r £ RelDes(P) contains the subterm p, and 

s is obtained from r by replacement of p by the term q, then 
!~CFREQ+ r = s, 

(5) If I~CFREQ+ p = q, x is a, variable (possibly occurring in p or 
q), and r e RelDesP, then t-CFREQ+ p[r/x] = q[r/x\. That is, 
substitution of variables by terms is a valid inference rule. 

Axioms: Set of equations characterizing the class of abstract fork algebras 
with a nonempty set of urelements. 

Notice that in the axiomatization of CFREQ+ we dropped the axiom 
requiring models to be simple. 

Theo rem 5.5 Let e be an equation from CFREQ+. Then, 

l=CFR+ e ^ = ^ !"CFREQ+ e • 

Proof By definition of the formalism CFR+, 

|=CFR+ e iff for all 21 G SAFAU, 211= e . (5.6) 
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Since the variety generated by SAFAU is AFAU, SAFAU and AFAU share 
the same equational theory. Thus, 

for all 21 € SAFAU, 211= e iff for all 21 e AFAU, 21 (= e . (5.7) 

Then, by (5.6) and (5.7), 

|=CFR+ e iff for all 21 e AFAU, 211= e . (5.8) 

By definition of CFREQ+ and (5.8), 

l=CFR+ e « = > t=CFREQ+ e • (5-9) 

Since equational logic is complete [G. Birkhoff (1944)], 

l=CFREQ+ e <=> ^CFREQ+ e • (5-10) 

Finally, joining (5.9) and (5.10), 

(=CFR+ e •£=» !~CFREQ+ e • n 

Theorem 5.6 Let a e ForFOLE(C,F,P) and let a =• oa of length k. 
Then, 

\=FOLE a «=> hCFREQ+Tv ,a(a;) = l 'fi;1 • 

Proof By Thm. 5.4, 

NFOLEC* <=• K F R + 2 V ,*(<*) = 1'S;1. (5.11) 

By Thm. 5.5, 

r=CFR+rVl<r(a) = l , u ; l <=* hC F R E Q +Tv ,C T(a) = l ' S ; l . (5.12) 

Thus, by (5.11) and (5.12), 

\=FOLE OL <=> I-CFREQ+ Ty>(T(a) = l '{j ; l . 

If in the preceding theorem a is a sentence, then Length(aa) = 0. Then 
the following corollary holds. 

Corollary 5.1 If a & ForFOLE(C, F, P) is a sentence, then 

\=FOLE a. •<==$• h C F R E Q +T v , ( ) (o ; ) = 1. 
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The result shown in Cor. 5.1 was already known for other algebraic sys­
tems closely related to fork algebras, as quasi-projective relation algebras 
and pairing relation algebras. The work on the interpretability of first-order 
theories in quasi-projective relation algebras was extensively developed by 
Tarski and Givant in [A. Tarski et al. (1987)], while the version for pair­
ing relation algebras was developed by Maddux in [R. Maddux (1989)]. In 
[L. Henkin et al. (1985)], FOLE is algebraized using cylindric algebras. 
Cylindric algebras are a very natural algebraic counterpart of FOLE. The 
fact that they have a Boolean algebra reduct allows the propositional part 
of FOLE to be algebraized. Also, for each quantifier 3UJ, a new operator 
Ci (called the i-th cylindrification) is defined. The axioms for the cylin-
drifications are natural translations of valid properties for the existential 
quantifiers. For example, the property 3vj3u,a •*=> 3vj3via corresponds 
to the cylindric algebra axiom aCjX = CjCiX, for all pairs of indices (i,j). 
Finally, for each pair of indices (i,j), a constant element d^ (called the 
ij-diagonal element) is distinguished. Intuitively, d^ characterizes alge­
braically the predicate v* == Vj. Notice that an infinite number of axioms 
are required for axiomatizing the infinitely many cylindrifications and di­
agonal elements. The fact fork algebras have only finitely many operators 
and are axiomatized by a finite set of equations makes fork algebras more 
attractive in computer science, where this finiteness plays an essential part 
in the implementability of a calculus for program construction based on 
fork algebras. 



Chapter 6 

Algebraization of Non-Classical Logics 

The results in this chapter were obtained jointly by Prias and Orlowska 
[M. Frias et al. (1997)c; M. Frias et al. (1997)d]. Equational reasoning 
based on substitution of equals by equals is the kind of manipulation that 
is performed in many information processing systems. The role of equa­
tional logics in the development of formal methods for computer science 
applications is increasingly recognized and various tools have been devel­
oped for modeling user's systems and carrying through designs within the 
equational framework [D. Gries (1995); D. Gries et al. (1993)]. 

The idea of relational formalization of logical systems was originated 
by Ewa Orlowska in [E. Orlowska (1988)] and further developed in [E. 
Orlowska (1992); E. Orlowska (1994); E. Orlowska (1995)]. 

Examples of relational formalisms for applied logics can also be found 
in Buszkowski and Orlowska [W. Buszkowski et al. (1996)], Demri and 
Orlowska [S. Demri et al. (1996); S. Demri et al. (1994)], Herment and 
Orlowska [M. Herment et al. (1995)] and elsewhere. The paradigm of rela­
tional formalization of logical systems is based on the principle of replacing 
any logic with a theory of a suitable class of algebras of relations [W. Mac-
Caull (1997); E. Orlowska (1988); E. Orlowska (1992); E. Orlowska (1994); 
E. Orlowska (1995)]. In order to define such a theory for a given logic, 
the language of the logic is to be translated into a sufficiently expressive 
language of relational terms in a validity preserving manner, i.e., a logical 
formula a is valid if its translation T(a) is a term such that T(a) = 1 holds 
in every relation algebra from the underlying class of algebras. However, 
since the class of representable relation algebras is not finitely axiomatizable 
[D. Monk (1964)], and the finitely axiomatizable class of relation algebras is 
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not representable [R. Lyndon (1950)], the existing relational frameworks for 
non-classical logics suffer several disadvantages. The class of fork algebras 
is both finitely axiomatizable and representable, and hence a fork algebra 
formalism seems to be an appropriate candidate for relational formalization 
of non-classical logics. 

The standard semantics of non-classical logics are usually defined in 
terms of frames [S. Kripke (1963); S. Kripke (1965)], that is, relational sys­
tems consisting of a set W of states and a family of accessibility relations in 
W. In any particular logical system the accessibility relations are assumed 
to satisfy some constraints. The meaning of a propositional formula is de­
fined, first, by means of an assignment m of subsets of W to propositional 
variables, and second, by extending m to all the formulas of the language 
under consideration. In this way every formula a is interpreted as a subset 
of states, with the intuition that m(a) consists of those states in which a 
is true. The meaning m(a) of formulas built with the classical proposi­
tional connectives of negation, disjunction and conjunction is defined from 
the meanings of the subformulas of a by the well known interpretation of 
these connectives in terms of Boolean operations of complement, join, and 
meet, respectively. The meaning m(a) of formulas built with intentional 
operators, such as modal operators of possibility and necessity, is usually 
defined in terms of both the values of m for the subformulas of a and an 
accessibility relation, which is most often a binary or ternary relation in 
W. 

The interpretability of a non-classical logic in the calculus CFREQ"1" is es­
tablished by means of a deduction preserving translation of formulas of the 
logic into formulas of CFREQ+. Under this translation, formulas, formerly 
understood as sets of states, and accessibility relations, receive a uniform 
representation as relations. The propositional connectives are transformed 
into relational operations. The constraints on accessibility relations are 
translated into relational equations. The major advantage of relational for­
malization is that it provides a uniform framework for representation of a 
broad class of applied logics and enables us to apply an equational proof 
theory to these logics. 

In the first part of this chapter we will develop an equational formalism 
based on fork algebras that is capable of modeling a great variety of applied 
non-classical logics and of simulating non-classical means of reasoning. In 
the second part of the chapter we will define a Rasiowa-Sikorski style deduc-
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tion system [H. Rasiowa et al. (1963)] for fork logic. We will then define a 
validity preserving translation from the language of intuitionistic logic and 
minimal intuitionistic logic into the language of fork logic. Next, we dis­
cuss three methods of intuitionistic reasoning within the framework of fork 
logic. The first method consists of extending the Rasiowa-Sikorski proof 
system of fork logic with some specific rules that reflect properties of the 
accessibility relation from Kripke models of logics based on intuitionism. 
The second method is based on a kind of relational deduction theorem that 
enables us to express derivability in fork logic of a term (representing a for­
mula of a logic) from a finite number of terms (representing conditions on 
the accessibility relation). In this case the plain proof system for fork logic 
is an adequate deduction tool. The third method employs the equational 
theory of fork algebras. We extend this equational theory with equations 
that represent the required properties of the accessibility relation and treat 
them as specific axioms, as we will do with modal logics in the first part of 
the chapter. 

The chapter is organized as follows. Section 6.2 presents the fork logic 
FL, a simplified version of CFREQ+. In Sections 6.3-6.5 a wide variety 
of modal logics are algebraized. In Section 6.6 we discuss the fork alge­
braic formalization of modal logics determined by a Hilbert-style axiom 
system. In Section 6.7, propositional dynamic logic is algebraized. In Sec­
tion 6.8 the logic FL' (a restriction of ETFR) is defined, and in Section 6.9 a 
Rasiowa-Sikorski style calculus for FL' is presented. In Sections 6.10-6.12 
the calculus presented in Section 6.8 is used for algebraizing intuitionistic 
logic, minimal intuitionistic logic and a wide class of intermediate logics. 

6.1 Basic Definitions and Proper t i e s 

T h e o r e m 6.1 Let V be the variety generated by the class o/.AiSFAU. 
Then, V = AFAU. 

Proof Clearly, V C AFAU. Let us prove the other inclusion. Given an 
algebra 21 e AFAU, by the representation theorem (Thm. 4.3) 21 is iso­
morphic to an algebra 25 £ PFAU. By definition of PFAU and Thm. 3.1, 
25 € ISPFullPFAU. Since full proper fork algebras with urelements are 
atomic, simple and have urelements, and varieties are closed under isomor­
phisms, subalgebras and products, 25 £ V. Finally, since 21 is isomorphic 
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to 03, also 21 e V, which implies that AFAU C V. • 

Theo rem 6.2 Let V be the variety generated by SPFAU. Then V = AFAU. 

Proof Similar to the proof of Thm. 6.1. • 

Theo rem 6.3 The equational theories of j4iSFAU and SPFAU coincide 
with the equational theory of AFAU. 

Proof Is a direct consequence of Thms. 6.1 and 6.2. D 

Definition 6.1 We say that an equation e is provable from a set of 
equations E in CFREQ+ relativized to an equational theory A (denoted by 
E !~CFREQ+,A e, if £ U A KCFREQ+ e -

The following definition gives an abstract characterization of urelements. 

Definition 6.2 Given 21 € AtFAU, x £ A is called an abstract urelement 
if x is an atom and x < V \j. 

In the remaining part of this chapter we will deal with sentences from 
FOLE, therefore, as Cor. 5.1 shows, only very restricted equations are 
needed (i.e., just those equations in which the term in the right-hand side 
is 1). Thus, we will use a simplified version of CFREQ+ that will be called 
fork logic FL. 

6.2 T h e Fork Logic FL 

In this section we introduce what we call Fork Logic FL. We also present 
a completeness theorem and a theorem on the interpretability of classical 
first-order logic in FL. This interpretability theorem will prove to be useful 
in Section 6.4 for the description of model constraints. 

Definition 6.3 We define the alphabet of fork logic as the union of the 
sets described by the following conditions: 

(1) A countable set RelVar of relational variables. 
(2) The set of logical symbols: +, •,;, V, ~,", 1', 0,1. 
(3) A countable set RelConst of extralogical symbols (i.e., relational 

constants whose meaning varies between models). 

Definition 6.4 A finite sequence of symbols from the alphabet of fork 
logic is a fork formula iff it belongs to every set Q, satisfying: 
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(1) RelVar U RelConst U { 1', 0,1 } C fi. 

(2) If Ji, 5 € fi then j R,R,R+S,R-S,R;S,RWS } C fi. 

Definition 6.5 We say that a fork formula a is provable from a set of 
fork formulas T in an equational theory A (denoted by T \~FL,A «) if 

{7 = 1 :7 G T } I-CFREQ+.A a = 1 • 

Definition 6.6 A fork model is a structure (21, m) where 21 G AFAU, 
and m is the meaning function that assigns relations in A both to variables 
in RelVar and to the extralogical symbols in RelConst. It is clear how to 
extend m homomorphically to a function m' : f2 —• A. For the sake of 
simplicity, we will use the name m for both mappings. 

Definition 6.7 A fork model (21, m) is called proper if 21 G PFAU, and 
simple if 21 G SAFAU. Similarly, a fork model is called atomic if 21 G AtFAU. 
The class of proper fork models will be denoted by PFM, and the class of 
simple fork models by SFM. The class of fork models simple and proper will 
be denoted by SPFM and the class of atomic fork models will be denoted 
by AtFM. The class of atomic and proper fork models will be denoted by 
AtPFM, and the class of atomic and simple proper fork models by AtSPFM. 

Definition 6.8 A fork formula tp is said to be true in a fork model T — 
(21, m) (denoted by T \=FL <p) if fn{f) = 1 holds in 21. A fork formula tp 
is said to be true in a class of fork models /C, if for every member T of K, 
F \=FL <P-

Definition 6.9 A fork formula (p is said to be valid in FL (denoted by 
\=FL <f) if in every fork model J7 we have T \=FL <P-

Since P FA is a finitely based variety whose axioms are those for abstract 
fork algebras, the following theorem holds. 

Theorem 6.4 FL is strongly complete, i.e., given a fork formula R, a 
set $ of fork formulas, and an equational theory A, 

$ \=FL,A R in PFM «=> $ \~FL,A R • 

Proof 
=>•) If $ !^FL,A R, then there exist 21 G AFAU and a meaning function m 
such that 

(1) for every equation I = r G A, m(l) = m(r), 



78 Algebraization of Non-Classical Logics 

(2) for every ^ 6 $ , m((p) = 1, 
(3) m{R) + 1. 

By Thm. 4.3, there exists <B € PFAU and an isomorphism h : 21 —» 23. 
Let m' be the meaning function defined by m'(a) = h (m(a)). Then, 

(1) for every equation I = r £ A, m'(l) = m'(r), 
(2) for every ^ S $ , m'(y>) = 1, 
(3) m'(R) ^ 1. 

Thus, it is not the case that $ \=FL,A. R in PFM. 
<=) The proof in this direction is simple and is left to the reader. • 

As a consequence of Cor. 5.1, the following theorem on the interpretabil-
ity of classical first-order theories in FL follows. 

Theorem 6.5 Any first-order theory is interpretable in FL, i.e., given a 
first-order theory ^ and a sentence a, there exists a set of fork formulas 
Fy (constructed from $!) and a fork formula ta (constructed from a) such 
that 

* (- a 4=^ Fy \-FL ta . 

Proof Define F* as { TVt„(ij) : V G * } and tx as Tv,CT(a). Then apply 
Cor. 5.1. ' • 

6.3 Modal Logics 

In this section we present an introduction to modal logic. We begin by 
introducing the notion of frame, and then the notion of Kripke model. Using 
these structures we define satisfiability and validity in modal logics. For a 
thorough treatment of modal logic we direct the reader to [P. Blackburn et 
al. (2001)]. 

Definition 6.10 A frame is a structure (W, R} where W is a nonempty 
set of possible worlds and R C W x W is a binary accessibility relation 
between worlds. 

Definition 6.11 Given a frame (W,R), a Kripke model is a structure 
SOT = (W, R, m) where m is a meaning function that assigns subsets of W 
to propositional variables. 
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Definition 6.12 The inductive definition of satisfiability describes the 
truth conditions depending on the complexity of formulas. For the atomic 
formulas (propositional variables) we have: 

(at) M, w f= p iff w £ m(p), for any propositional variable p. 

For formulas built with extensional operators such as classical nega­
tion, disjunction, conjunction or implication, their satisfiability at a possi­
ble world is completely determined by satisfiability of their subformulas at 
that world. 

(-1) M,w\=->a iff not M, w \= a, 
(V) M, w (= a V 0 iff M, w \= a or M, w f= /3, 
(A) M, w \= a A p iff M, w \= a and M,w\= f3, 

(->) A f > | = a - > / 3 i f f A / > | = - . a V / 3 . 

For formulas defined from modal operators, such as [R] (necessity) and 
(R) (possibility), we have 

([R]) M,w \= [R] a iff for all u e W, {w,u) G R implies M,u\= a, 
({R)) M,w\= (R) a iff there is u € W s.t. (w, u) e R and M, u (= a. 

For the sake of simplicity, we use the same symbol for the relational constant 
R that appears in modal operators and the accessibility relation that is 
denoted by this constant. 

In various modal logics, the accessibility relation is assumed to satisfy 
certain conditions. If we call FRM(C) the class of all those frames in which 
the accessibility relation satisfies a given set of conditions C, then the set 
of all the formulas valid in that class is called the logic L(C). For example: 

K 
T 
KB 
B 
KA 
KB4 
54 
S5 

= 
= 
= 
— 
=z 

= 
= 
= 

L{%), 
L({ reflexive}), 
L({ symmetric }), 
L({ reflexive, symmetric }), 
L({ transitive }), 
L({ symmetric, transitive }), 
L({ reflexive, transitive }), 
L({ equivalence }), etc. 
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Definition 6.13 Given a Kripke model Wl = (W,R,m) and a modal 
formula a, a is said to be true in 9JI if 

Wl, w |= a for all w £ W . 

Definition 6.14 A modal formula a is called valid if it is true in all 
models. 

6.4 Represen ta t ion of Cons t ra in ts in FL 

In many nonclassical logics, accessibility relations in Kripke models must 
satisfy some properties or 'constraints'. We have already shown examples 
of constraints assumed in particular modal logics in the previous section. 
In this section we will show how these constraints can be captured in an 
abstract relational language by using fork logic. 

When constraints are given as first-order formulas predicating about 
worlds, sometimes it is possible to capture these constraints by appealing 
to relation algebra concepts, without using fork logic. For example, in the 
case of the logic T, in which the accessibility relation must be reflexive, we 
can represent this fact in relation algebra with the condition 

V+R = l. (6.1) 

If we look at (6.1) as a fork algebra equation, then a first advantage 
is given by the representation theorem (Thm. 4.3). It allows us to look 
at 1' as the diagonal relation, + as the union between sets, and 1 as the 
universal relation, property that is not shared in general by relation alge­
bras. Another advantage of fork logic is its expressiveness, since fork logic 
allows us to express strictly more things than relation algebras. Recall that 
while relation algebra terms are adequate for interpreting just a three vari­
able fragment of first-order logic (see [A. Tarski et al. (1987), pp. 76-87]), 
Thm. 6.5 guarantees that all of classical first-order logic can be interpreted 
in fork logic. An immediate consequence of this is that many developments 
which resort to algebras of binary relations can now be carried on just by 
resorting to the framework of abstract fork algebras. 

In order to formalize the previous remarks, let A be a set of first-order 
constraints defining a set of Kripke models. We represent the set A in the 
logic FL by {TV,CT(<5) : 5 e A}. 
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6.5 In terpre tabi l i ty of Moda l Logics in FL 

Throughout this section we will assume a fixed (but arbitrary) modal logic 
L. Since the notion of satisfiability has a finer granularity in modal than 
in classical logics because of the notion of satisfiability at a given world, we 
will define a similar notion for FL. 

Definition 6.15 Given an atomic fork model (21,m), x € A is called a 
relational world if it is an atom satisfying x < V u • 

Definition 6.16 Given an atomic fork model T = (21,m), T satisfies 
the fork formula a in a relational world w (denoted by T, w \=FL ct), if in 
the fork algebra 21 the inequality w;m{a) ^ 0 is true. 

In order to interpret L in FL we will proceed in the following way. 

(1) We will define a mapping TM from modal formulas to fork formulas. 
(2) We will prove that given a Kripke model & = {W,R,m} and a 

formula a, there exists a fork model T (constructed from R) such 
that a is satisfied at a world w in & iff TM{CX) is satisfied in the 
relational world { {w, w) } in T. 

(3) We will prove that given a fork model T for L and a modal formula 
a, there exists a Kripke model Si (constructed from T) such that 
TM(OC) is satisfied at a given world w in J- iff a is satisfied at w in 
R. 

Definition 6.17 Before defining the mapping TM, we define the mapping 

T'M^T-

(1) T'M(pi) = Pi, where pt is a propositional variable and Pi is a rela­
tional variable, 

(2) 7^(-a) = l 'u ;7^R, 
(3) TM(aAP)=T'M(a).TM(f3), 
(4) T'M(aVl3) = TM(a) + TM(f3), 
(5) TM((R)a) = R;TM(a), 
(6) T'M{[R]a)=T'M{-,(R)-^a). 

We finally define the mapping TM by TM(OI) = T'M(a)+ \jl. 

For the sake of simplicity, in Def. 6.17 (5) and (6), we assume that the 
constant R from the modal language is translated into a constant from the 
language of fork logic that is denoted by the same symbol. 
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Lemma 6.1 Given a Kripke model R= (W,R,m) for L, a world w £ W, 
and a modal formula a, there exists T = (A,m') £ AtPFM constructed 
from &, and a relational world w' constructed from w such that 

&, w \= a 4=> T,w' \=FL T'M(a) . 

Proof Let 21 be the full fork algebra with set of urelements W. 21 is 
simple, proper and atomic. Let m'(Pi) be the right-ideal relation with 
domain m(pi). Let w' be the relational world { (w,w) }. More generally, 
given v £ W, let v' := { {v,v} }. The remaining part of the proof proceeds 
by induction on the structure of the formula a. 

a=Pi-. 

a = ^/3: 

&, w (= a 
{bydef. H 
w £ m(pi) 

{bydef. m'(Pi)} 
w £ dom (m'(Pi)) 
{ by def. w' } 
w';m'(Pi)^0 
{ by def. \=FL } 
F,w>\=FLTM(a). 

&,w \= a 
{bydef. H 

{ by inductive hypothesis } 
F,w'\£FLT'M({3) 
{bydef. Y=FL} 

w';T^(/3)=0 
{ by properties of binary relations } 
t i / ; l 'u; l£GS)^0 
{ by def. f=FL } 
F,w' \=FLT'M(a). 
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a = /3V7: 

&, w \= a 
{bydef. H 
&, w \= j3 or &, w f= 7 
{ by inductive hypothesis } 
^ X N F L T'M((3) or ^ ,u ; ' ^ F L Tj^(7) 

{ by def. \=FL} 

« ; ' ; r ^ C 8 ) ^ 0 o r i i ; ' ; I X f ( 7 ) ^ 0 
{ by properties of binary relations } 
W;(T'M(P)+rM(y))*0 
{ by def. \=FL } 
F,w'^FLT'M(a). 

a = (R) /3: 

&,w (= a 
<=> {bydef. H 

there exists u such that loiiu and &, u \= /3 
<*=*> { by inductive hypothesis } 

wRu and J7, w' (=j?£ T'M{f3) 
^ {bydef. ^ F L } 

u ; i ? u a n d u ' ; T ^ ( / 3 ) ^ 0 
<=$• { by properties of binary relations } 

w'\R\TM{p)±Q 
<=> {bydef. \=FL} 

F,w' \=FLT'M{O). 

U 

Lemma 6.2 Given T = (21,m) € AtSPFM, a relational world w and a 
modal formula a, there exists a Kripke model R= (W,R',m') (constructed 
from J-) and a world w' £ W (constructed from w) such that 

T,w \=FL T'M(a) <^> R,w'\=a . 

Proof Let us take W = Urdu, R' = { (x,y) € W2 : x;m(R);y ^ 0 }, 
w' = w, and let m' be defined by m'(pi) = {u G W : u\m(Pi) ^ 0} . In 
order to prove the theorem we will proceed by induction on the structure 
of the formula a. 
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T,w \=FiT'M{a) 
<s=> { by def. \=FL } 

<=» { by def. m' } 
w' £ m'(pi) 

^=> {by def. h ) 
£, w' (= a. 

F,™ \=FLT'M(O) 

{bydef.T^ a n d ^ F L } 

™;l'u;T^(/3)^0 

| by £>om (T'M(P)) -Dom (T'M{(3)\ = O a n d w atom } 

w;T'M(f3)=0 
{ by def. \=FL } 
F,w£FLT>M(p) 
{ by inductive hypothesis } 

{by def. H 
£, iu' |= a. 

F,w \=FLT'M(a) 
<=^ {by def. f = F L a n d T ^ } 

w;(Th(/3)+Thh))*0 
<=$• { by properties if binary relations } 

u ; ; T ^ ( / ? ) ^ 0 o r i i ; ; T k ( 7 ) # 0 
«=̂ > { by def. |=F L } 

F,w \=FL T'M{(3) or F,w \=FL TM{i) 
•<=> { by inductive hypothesis } 

A, w' |= p or £, w' (= 7 
<*=* {by def. H 

£, u/ |= a. 
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a = (R) 0: 

F,w \=FLT'M((X) 

<^> { by def. \=FL } 
w;R;T'M(f3)^0. 

Since 21 is atomic, there is an atom u < Ran(R) •Dom(T'M{p)). 
Since Ran(R) < l'u, u < l 'u, and therefore is a relational world. 
Thus, 

w;R;T'M(f3)^0 
{ by previous paragraph } 
w;R;u^0 and u;T'M(/3) ^ 0 

{ by def. H F L } 

(w,u) e R' and F,u^FLT'M{(3) 
{ by inductive hypothesis } 
(w, u) £ R' and R, u \= (3 
{by def. H 
R, w' j= a. 

D 

From Lemmas 6.1 and 6.2, we obtain the following result on the inter­
pretability of the modal logic K. In order to shorten notation, given a set 
of modal formulas * , by T M (* ) we denote {TM{^) : ^ £ * } . 

Theorem 6.6 Given a set of modal formulas ty and a modal formula ip, 

* \=K V <=» TMm \=FL TM{<p) in AtSPFM . 

Proof =>) Let us suppose it is not the case that TM(^) \=FL TM{V) in 
AtSPFM. Then, there exists T = (2l,m) e AtSPFM such that the set 
of equations {TM(tp) = 1 : ip £ * } holds in 21, but TM(ip) ^ 1. Then, 
Dom (T'M(</>))• l'u 7̂  0, and since 21 is atomic, there exists an atom w such 
that w < Dom (T'M(<p))-Vu. Then, since (Dom (T'M(tp))-l'u);Tfo(tp) = 0, 
we have w;T'M(tp) = 0. Thus the fork model J- and the relational world w 
satisfy J7, w \=FL TM(^) and T', w ^=FL TM{<P)- Then, by Lemma 6.2 there 
exists a Kripke model R — (W,R',m') and w' £ W such that w' satisfies 
\& in the model R, but does not satisfy <p, which contradicts the hypothesis. 
4=) Let us suppose it is not the case that \& \=K <p. Then, there exists 
a Kripke model R = (W,R,m) and w S W such that w satisfies \J> in 
the model R, but ip is not satisfied. Then, by Lemma 6.1 there exists 
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T = (21,m') e AtSPVW and a relational world w' such that TM{^) holds 
at w' in .F, but TM{<P) does not, which contradicts the hypothesis. • 

The following corollary shows the real strength of Thm. 6.6. 

Corollary 6.1 Given a set of modal formulas \t U {ip }, 

*^K<P <=> TM^>) hFL TM(<fi) • 

Proof By Thm. 6.6, * \=K <p iff T M (# ) |=J?L T w (p) in the class of 
AtSPFM. By Thm. 6.3, TM{p) \=FL TM(<p) in the class of AtSPFM 
iff TM{^) \=FL TM(<P)- Finally, by completeness of equational logic [G. 
Birkhoff (1944)], TM(*) ^FL TM(<P) iff TM(*) \~FL TM{V)- • 

Theorem 6.6 is proved for the modal logic K, in which no constraints 
are imposed over the accessibility relation. The next theorem generalizes 
the previous result. 

Theo rem 6.7 Given a modal logic L(T), where V is a set (not necessarily 
finite) of first-order sentences, 

Proof Follows directly from Cor. 5.1 and Cor. 6.1. • 

6.6 A Proof Theoret ical Approach 

If the logic L under consideration has an axiomatic system that is complete 
with respect to the semantics of (the language of) L, then we can prove 
interpretability of L in fork logic in a proof theoretic style. As an example, 
let us show how the equational calculus of fork algebras can be used for 
proving interpretability of some specific modal logics. 

Definition 6.18 The calculus for the modal logic K is given by the 
following axiom schemas and rules: 

(K) [R](A-,B)^([R}A^[R}B). 
(RN) {A} \-K [R}A 
(MP) {A,A^B}\-KB. 

The following theorem shows that we can replace provability of any 
formula a in the logic K by provability of a fork logic formula obtained 
from a in fork logic. 
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Theorem 6.8 For every modal sentence a, we have 

VK a <*=> \-FL TM{OL) . 

Proof 

=>) We will proceed by induction on the length of proofs. Let us have a 
proof of length 1, then a must be an instance of the axiom schema K. 

TM(K) = VV;T^([R](A - B)) + T'M([R]A - [R]B) + ul 

= Vu;Vu;R;Vu;T^(A^B) + VV;VV;R;VU;T^{A) 

+ VU;R;VU;T0T) + UT 

= R;VU;T^(A)+T^(B) + VU;R;T^{A) 

+ l'u;i?;7V5) + uT 

= R; (T'M{A).T^{B)) + R;T^(A) + l ' u ; J 2 ; 5 £ ( l ) + uT 

= r u ; i J ; ( (T; ( i ) - ip) ) +WA)) +i'u;-R;5UB)+UT 

> Vu;R;T^{B) + Vu;R;TiJB) + uT 

= ul + ul 

= 1. 

Since TM(K) > 1, it must be TM{K) = 1, as was to be proved. 
If the length of the proof is greater than 1, then: 

(1) a was obtained by RN from a formula /3, then if TM(P) = 1, we 
have 

TM([R}(3) = Vu;R;Vu;T^(/3) + ul 

= ru;# ; ru ;u l+UT 

= l ' u ; ^ 0 + UT 

= 1. 

(2) a was obtained by MP from the formulas f3 and /3 —> a. Then, if 
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TM(P) = 1 and TM{P —> a) = 1, we have 

r M ( a ) = 0 + T'M(a) + ^ T 

= Vu;^l +T'M(a) + ^T 

= l ' u ; I p j + T » + ^ T 

= TM(p -> a) 

= 1. 

<=) Let us suppose it is not the case that \~K OL. Then, since the calculus is 
complete, there exists a Kripke model 9JI = (W, R, m) and a world w £ W 
such that VJl, w Y=K <X. Thus, by Lemma 6.1, there exists a fork model 
J- = (21, m!) and a relational world w' such that !F,w' \£FL C*, which 
contradicts the hypothesis. D 

As a second example, let us consider the version of Thm. 6.8 for the 
modal logic T. 

Definition 6.19 The calculus for the modal logic T is obtained from the 
calculus for the logic K by adding the axiom schema 

(T) [R}A^A. 

It is well known that the calculus T is complete with respect to those 
frames whose accessibility relation is reflexive. Reflexivity can be easily 
characterized as an equation in the calculus of relations. For instance, the 
equation 1' u < R says that R is reflexive when R is interpreted as a relation 
on the set of urelements. Nevertheless, in the following theorem we will use 
the characterization of reflexivity provided by the mapping Tv,a (Def. 5.18) 

Tv,«r(Va:(iia:a;)) = l u ; ( l ' V V;R) ;2;1 . 

Even though the equation obtained in this way is more complex, it is 
worth emphasizing that it was obtained automatically from the first-order 
definition of reflexivity. 
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Now we will show that both equations characterizing reflexivity are 
equivalent. 

Tv,CT (yx(Rxx)) = 1 

l u ; ( r V ! ' ; £ ) ;2;1 = 1 (by applying TV,CT) 

lu ;{y-B S j ; l = l (by Ax. 5 and Thm. 3.2.1) 

l u ; ( l ' - . f t ) ; l=0 (byBA) 

(ul;l) • ( l ' - i ? ) ; l = 0 (by Ax. 7) 

«=> u i < (r--ft) ;i (byBA) 

-*=> 1' u < 1' • R (by prop, of right-ideals) 

<̂ => l'u < £ (by BA) 

<$=> 1' u < i?. (by monotonicity of v) 

Theorem 6.9 For every modal formula a, 

\-T a ^> Tv>a {Vx(Rxx)) \-FL TM(a) . 

Proof Let us show that Tv,<r (Vz (Rxx)) \-FL TM {{R]A -> A). 

TAf([12]i4-»i4) = i ,u;i ,u;i2;i'u;r^(i4) + T^(A) + 0 i 

= R;TM(A) + T'M{A) + ul 

= l 'u;r^(A) + Vu;T'M(A) + UT 

= 1. 
• 

Next, let us consider the logic B, whose accessibility relation is reflexive 
and symmetric. The following definition presents a calculus for B. 

Definition 6.20 The calculus for the logic B is obtained from the cal­
culus for T by adding the axiom 

(B) A -» [R] {R) A. 
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It is easy to show that applying the mapping Tv,<r to the first-order 
sentence Vx,y(Rxy —> Ryx) (which asserts the symmetry of R) we obtain 
an equation equivalent to the simpler relational equation R = R. 

Theorem 6.10 For every modal formula a, 

\-B a <^=> TV,CT (Vzy (Rxy -> Ryx)) \-FL TM(a) . 

Proof Let us show that the axiom schema B satisfies TM{B) = 1. Ap­
plying the mapping T'M, we obtain 

T'M(A-+[R](R)A) 
= { b y d e f . T ^ } ^ _ _ ^ = ^ 

VU;T'M(A) + Vu;R;Vu;R\T'M(A) 
= {byBA} 

VU;T'M(A) + Vu;R;l'u;R;T'M(A) 
= {byBA} 

= { by Thm. 2.3.19 and BA} 

(ST + l'u;T^(^)) • (UT + l'u;B;l'u;fli75^4)) 
= {by BA, fl = l 'u ; f l ; l 'u, ? M = 1'U;?M } 

= { by R symmetric } 

UT+ ((T'M(A)) • (R;R;T>M(A))) 

> {by (2.2)} 

^1 + 1;(R;T'M(A) • (R;T'M(A))) 
= {byBA} 

ul + 1;0 
= {by Thm. 2.3.1} 

UT + 0 
= {byBA } 

ul-

Thus,TAf(B) = r ^ ( B ) + U T = u l + U T = l . • 
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6.7 Interpretability of Propositional Dynamic Logic in FL 

Propositional dynamic logic is considered as a programming logic, i.e., a 
logic suitable for asserting and proving properties of programs. Dynamic 
logic is a modal logic whose modal operators are determined by programs 
understood as binary relations in a set of computation states. For thorough 
presentations of dynamic logic see [D. Harel (1984); D. Harel et al. (2000)]. 
The following definitions provide a formal description of propositional dy­
namic logic. 

Definition 6.21 Let us consider a set PQ of atomic programs, and a set 
Fo of atomic dynamic formulas. From these sets we will construct the sets 
F of dynamic formulas and P of compound programs. 

F and P are the smallest sets satisfying the following conditions: 

(1) true G F, false £F,FQC F, 
(2) if p G F and q G F then ^p e F and (p V q) G F, 
(3) if p G F and a G P then (a) pGF, 
(4) Po C P, 
(5) if a G P and /3 G P then (a U /?) G P, (a;/?) G P and a* € P , 
(6) i f p e F t h e n p ? e P . 

Notice that in Def. 6.21 the sets F and P are defined by mutual recur­
sion, i.e., in order to define F we assume the definition of P (in (3)) and in 
order to define P we assume that F is defined (in (6)). 

Definition 6.22 A dynamic model is a triple 25 = (W, r, S) where W is 
a set of states, T assigns subsets of W to atomic formulas, and 8 assigns 
subsets of W x W to atomic programs. The mappings r and 6 are extended 
inductively to determine the meaning of compound formulas and programs 
as follows: 

r(true) = W, 
T( false) = 0, 

T(->P) = r(p), 

r(pVqr) = T ( P ) U T ( ? ) , 

T((a)p) = { s G W : 3t ((s, t) G 5(a) A t G r(p)) } , 
6(a;0) = { (s,t) : 3u((s,u) G 5(a) A (u,t) G *(/?)) } , 
<J(aU/?)=<5(a)u<5(/3), 
S(p?) = {(s,S):seT(p)}, 
5(a*) — 5(a)* (the reflexive and transitive closure of 5(a)). 
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Prepositional dynamic logic is know to have a complete Hilbert-style 
calculus. The calculus is given in the following definition. The proof of 
the completeness of the calculus is given in [D. Harel (1984)], Thm. 2.11, 
p. 515. 

Definition 6.23 The calculus for prepositional dynamic logic is given by 
the following axiom schemes and inference rules: 

(Al) all instances of tautologies of the propositional calculus. 
(A2) (a) (p Vg) <->«£*} pV(a )g ) . 
(A3) (a;/3)p«->(a></3>p. 
(A4) <aU/?)p<->«a)pV</?)p). 
(A5) ( a * ) p ~ (pV(a)(a*)p) . 
(A6) (q?)p<^pAq. 
(A7) [a*] ( p - > [ a ] p ) - ( p - [ a ' ] p ) . 
(A8) [a](p->9)->([a]p-»[<*]«). 
The inference rules for the calculus are, as in K, modus ponens and 

generalization. 

The presence of the Kleene star operator in the language of dynamic 
logic requires a slight generalization of fork algebras in order to obtain the 
interpretability result. 

Definition 6.24 A closure AFA (CAFA for short), is a structure (21,*) 
such that 21 G AFA, and * satisfies the equations 

R* = V+R;R*, (Ax. 11) 

R*;S;1<S;1 + R*;(S-1 • R;S;1). (Ax. 12) 

The second equation was added for technical reasons. It is needed in 
order to prove Thm. 6.11 below. In order to show its validity, let us analyze 
its meaning. The second-order formula 

VRVSVx (3y (xR*yAy£S)=> 

( i e Sv3z(xR*zAz <£ S A3w(zRwAw <= S)))) 

expresses that if a finite path exists in the graph induced by R, which 
connects x with an element y £ S, then, either x is already in S, or from x 
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we can reach an object outside S which is .R-next to an object in S. This 
is a desirable property of the operation *. Keeping in mind that right-ideal 
relations represent sets, it is easy to see that Ax. 12 in Def. 6.24 represents 
this second-order formula. 

Prom closure fork algebras, it is an easy task to generalize fork logic 
to the so called closure fork logic (denoted by CFL). The construction of 
closure fork logic is analogous to the construction of fork logic. 

In the forthcoming theorems the mappings TDL and Tp defined below 
will play a central role. 

Definition 6.25 In order to define the mappings TDL and Tp from dy­
namic logic formulas and compound programs, respectively, into terms in 
the language of closure fork algebra with urelements, we first define the 
mappings T'DL and Tp by mutual recursion. 

T'DL(pi) = Pi, (pi an atomic formula.) 
T'DL(true) = ul, 
T'DL(false) = 0, 
T'DLhp) = Vu;Ti)L(p), 
TDL(pVq)=TDL(p)+TDL(q), 
T'DL{{R)p)=TP{R)-T'DL{pl 
Tp(Ri) = Ri, (Ri an atomic program.) 
Tp(RuS) = Tp(R)+TP(S), 
Tp(R;S)=TP(R);Tp(S), 
TP(R*) = TP(R)*, 
TP{pl) = T'DL{p)-l\. 

Next, we define the mapping TDL by TDL{®) = T'DL(a) + \j\. 

In a similar way as in FL, we introduce the notion of closure fork model. 

Definition 6.26 A closure fork model is a pair (21, m) where 21 is closure 
abstract fork algebra with urelements (CAFAU), and m is the meaning 
function that assigns relations in A both to variables in RelVar and to the 
extralogical symbols*. It is clear how to extend m homomorphically to a 
function m' : 0, —> A. For the sake of simplicity, we will use the name m 
for both mappings. 

*In this case, the extralogical symbols are the atomic programs and the atomic formulas. 
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Lemma 6.3 Given a dynamic model D = (W, r, 6), there exists a closure 
fork model C = (21, m) such that for any dynamic formula <p 

dom (m(T'DL(V))) = T{<p) . 

Proof Let Ri be an atomic program, and pi an atomic formula. Let 21 
be the full fork algebra with set of urelements W. Let us define m (Pi) = 
{ (s,x) : s G r(pi) } and m (Ri) = 5(Ri). The proof is by induction on the 
structure of the formula ip. 

<P = PH 

ip = true: 

<f = false: 

dom (m(T'DL{pi))) 
{ b y d e f . T ^ L } 
dom (m(Pi)) 
{ by def. m } 

T(Pi). 

dom (m(T'DL(true))) 
{ b y d e f . T ^ } 
dom(ul) 
{by W= llrel*} 
W 
{ by def. T } 
r(true). 

dom (m(T'DL(false))) 
{bydei.T'DL} 
dom (0) 
{by def. 0} 
0 
{ by def. r } 
r(false). 
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(p = -»p: 

dom(jn(rDL(-rp))) 
= { b y d e f . T ^ } 

d o m ( l ' u ; m ( T ^ ( p ) ) ) 

= { by m (T'DL(p)) right-ideal} 
W\6om{m{T'DL{p))) 

= {by inductive hypothesis} 
W\r(p) 

= {by def. r } 

T(TP). 

<p — pV q: 

dom(m(I£L(pV <?))) 
= {by def. 2 ^ } 

6om{{m{T'DL{p)+T'DL{q)))) 
= {by def. m } 

dom (m (T'DL(p))) U dom (m (T'DL(q))) 
= {by inductive hypothesis} 

T(P) U r(q) 
= {by def. T} 

T{pWq). 

f = (Q) P: Let us prove by induction on the structure of Q that 

m(TP(Q)) = 5(Q) . 

Q = Rn 

m(TP(Ri)) 
= { by def. TP} 

m(Ri) 
= {by def. m} 

S(Ri). 

Q = Rl)S: 

m(Tp{R\JS)) 
= { by def. Tp} 
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m(TP(R)+TP{S)) 
= {by def. m } 

m(Tp(R))Um(TP(S)) 
= {by inductive hypothesis} 

S(R) U 5(S) 
= {by def. 6} 

6(RUS). 

Q = R;S: 

m(TP(R;S)) 
= {by def. 7> } 

m(Tp(R);TP(S)) 
= {by def. m } 

m(Tp(R))om(TP(S)) 
= {by inductive hypothesis} 

S(R)oS(S) 
= {by def. <5} 

S(R;S). 

Q = R*: 

m(TP{R*)) 
= {by def. TP} 

m{TP{R)*) 
= {by def. m } 

m{TP{R)Y 
= {by inductive hypothesis} 

w 
= {by def. J } 

Q = q?: By definition of Tp, 

m{Tp{ql)) = {m{T'DL{q))-Vu) . 

But, 

™{T'DL{q)) -l'u = {(«;,«;> G W 2 : w e dom (m(2^ L ( g ) ) ) } . 
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Since the complexity of q is strictly smaller that the complexity 
of <p, by inductive hypothesis 

m(T'DL(q)) -l'u = { (» ,» ) G W2 : w € T(<?) } = 5(g?) . 

Finally, 

dom(m(TJbL«g>p))) 
= {by def. T ^ } 

dom (m(TP(Q);T^L(p))) 
= {by def. m } 

dom(m(TP(Q))om(Ti,L(p))) 
= {by previous lemma} 

dom{5(Q)om(T'DL(p))) 
= {by def. o } 

{ s G W : 3t G W ((s, i) G <5(Q) A t e dom (m (T|,L(p)))) } 
= {by inductive hypothesis} 

{ S £ ^ : 3 t 6 W ( ( S | « ) e ( 5 ( Q ) A t G r(p)) } 
= {by def. T } 

r ( ( Q ) p ) . n 

Theorem 6.11 Given a dynamic formula <p, 

Proof =>) Proving that \~CFL TDL(<P), is equivalent to proving that 
TpL(<p) = ul- The proof proceeds by induction on the length of proofs. If 
the proof has length 1, then <p must be an instance of one of the axioms. 
Let us analyze each one of the axiom schemes. 
(Al) If <p is an instance of a propositional tautology, T'DL(tp) = ul c a n De 

easily proved. 
(A2) By definition of <->, 

{a)(pVq) *-> ((a)pV{a)q) 

= ((a)(pVq)-+((a)pV(a)q)) A ((a) (p V q) «- ((a) p V (a) q)) . 

Since T'DL (P A Q) = T'DL (P) -T'DL (Q), it suffices to show that 

T'DL{(a)(pVq)-+({a)pV{a)q)) = y,l and 

rDL{(a)(p\/q)<-((a)pV(a)q))=ul. 

file:///~cfl
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T'DL({a)(pVq)^((a)pV(a)q)) 
= {bydef. -»} 

Vu;Tp(a);(T>DL(p)+T>DL(q)) + TP(a);T'DL(p) + TP(a);T'DL(q) 
= {by Ax. 2} 

l'u;TP (a) ; {T'DL (p) +T'DL (q)) + l'u ;2> (a) ; (T'DL (p) +Tf,L (g)) 
= {by Ax. 2} 

l 'u; ( r p ( a ) ; ( T f , L ( p ) + T f , L ( g ) ) + TP (a) ; ( T ^ (p) + T ^ (<?))) 

= {byBA} 

ul-

^ ( W ( ? V ? ) - ( ( a ) p V ( Q ) g ) ) 
= {bydef. <-} 

Vu;TP (a) ;T'DL (p) + TP (a) ;T'DL (q) 
+ TP(a);(T'DL(P)+T'DL(q)) 

= {by Ax. 2} 
VU;TP (a) ; (Tf,L (p) +T'DL (q)) + 1'ujTp (a) ; (T'DL(p)+T'DL (q)) 

= {by Ax. 2} 

l 'u; (Tp{a)-{T'DL(p)+T'DL{q)) + TP (a) ; (T'DL(p)+T'DL (g))) 

= {byBA} 

ul-

(A3) 
Tf,L«a;/?)p <-> (a) (ftp) 

= {by def. «-> } 
T'DL(((a;P)p^(a)(P)p) A «a ; / J )p - (a) </3>p)) 

= {by defs. —>, <— and T[,L } 

( l ' u ; rp ( a ; / 3 ) ;T f , L (p ) + l ' u ;T P ( a ) ;TP (/?) ;T'DL(p)) 

• ( l ' u ; T p (a) ;TP (/?) ;T'DL (p) + l ' u ; T P (a;/J) ;T|>L (p)) 

= { by def. T p } 
= {by Ax. 2 and BA} 

u l -u l 
= {BA} 

ul-

(A4) 
T i , L ( ( a U / 3 ) p ^ ( ( a ) p V ( / 3 ) p ) ) 

= {by def. *-*} 
Ti,L ( « a U/J) p - > « a ) p V </?)?)) A ((aU (3)p <- ((a) p V (/3)p))) 
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= { b y d e f . T ^ } 
(l 'u ;TP (a U (i) ;T'DL (p) + TP (a) ;T'DL (p) + TP (/?) ;T'DL (p)) 

• ( l ' u ; r p ( a ) ; r i , L ( p ) + TP{(3)-T>DL(p) + TP(aU f3) ;T'DL(p)) 

= {bydef. TP} 

(l 'u ;TP (a U /?) ;T^L (p) + l'u ;TP (a U /?) ;T£,L (p)) 

• ( l ' u ; T P ( a U / J ) ; T £ L ( p ) + l ' u ; T P ( a U / ? ) 

= { by Ax. 2 and BA } 

u l -u l 
= {byBA} 

ul-

(A5) 

T'DL{{**)P ~ (pV(a)(a*)p)) 
= {by def. <-»} 

T'DL(((a*)p^(PV(a)(a*)p)) A «a* )p «- (p V (a) <a*)p))) 
= {by defs. —>, <— and T'DL } 

(vu;Tp(a*);T'DL(p) + T'DL (p) + TP (a) ;TP (a*) ;T'DL (p)) 

• ( l 'u ;T'DL (p) +TP (a) ;TP (a*) ;T'DL (p) + Tp (a*) -T'DL (p)) 

= {bydef. Tp} 

( l 'u ;TP ( a r s r ^ ^ + ^ C p ) + T p ( a ) ; r P (a)* j T ^ (p)) 

• ( l 'u ;Ti,L (p) + Tp (a) ;Tp (a)* ;Tf,L (p) + T P (a)* ;2£ L (p)) 

= {by Ax. 2} 

( l 'u ;Tp (a)* ; rb L (p ) + (1' + TP{a) ;TP(ay) (p)) 

• ( l ' u ; (1' + TP (a) ;TP (a)*) -T'DL (p) + T P (a)* -TDL (p)) 

= {by Ax. 11} 

( l ' u ;Tp(a)* ;T^L(p) + r u ; T P ( a ) * ; ^ L ( P ) ) 

• ( l ' u ; r P ( a ) * ; T i , L ( p ) + l ' u ; T p ( a r ;2£ L (p) ) 

= { by Ax. 2 and BA } 

u l -u l 
= {byBA} 

ul-
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(A6) 

T'DLOPVQ " pAq) 

= {by def. <-> } 
T'DL(((p?)q^pAq) A ((p?) g «- p A q)) 

= {by defs. —>, <— and T'DL } 

( l ' u ; T p ( p ? ) ; T ^ ( g ) + (T'DL(p) (?))) 

• (l'u;ri,L(p).ri,L(g) + (TP (p?) ;Tf,L (9))) 
= {by def. T p } 

(i'u;(T ibL(p)-i'u);ri, i(9)+ (TbL(p).ri,L(g))) 

• ( r u ; T i , L ( P ) - 3 ^ L ( g ) + {{T'DL{p).V^T'DL{q))) 

= {by r j , L (p) right-ideal} 

( l 'u ^ (p) - T ^ (g) + {T'DL (p) - T ^ (g))) 

• (vu;T'DL(p)-T'DL(q) + (T'DL (p) -T'DL («))) 

= {by Ax. 2} 

l 'u; (TP(p?);rDL(q) + (TP (p?) ^ (9))) 

• l 'u; ( T p ( p ? ) ; r ^ ( g ) + (TP(p?) (?))) 

= {byBA} 

u l -u l 
= {byBA} 

ul-

(A7) 

T'DL{[**]{p^[*\p)^{p^[a*\p)) 

= l'u;l'u;rP(a*);ru;l'u;Ti,L(p)+l'u;Tp(a);l'u;Tf, i(p) 

+ ru;T^(P) + Vv;TP(a*);Vv;TgL~{p) 

= Vu;Tp(a*);Vu;T'DL(p) + VU;TP (a) ;TDL (p) 

+ r u ; T ^ M + l ' u ; T p ( a * ) ; T ^ y (by Thm. 2.3.19) 

= Tp (a*) ; ( T ^ ( P ) • TP (a) ; T ^ ) ) 

+ 1 ' u S + l 'u ;Tp(a*) ;T^ L (p) . (by Thm. 2.3.19) 
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Now, 

Tp(a*);(T'DL(p)-TP(a);T^)) 

+ 1 ' U ; 3 L I ( P ) + l ' u ; r P ( a * ) ; 2 ^ P = u l 

iff (by elementary Boolean algebra) 

TP (a*) ;T^Jp) < TP (a*) ; (T'DL(P) • T P (a) ; T ^ ) ) + l ' u ; T ^ ) 

iff (by properties of right-ideal relations) 

TP (a*) ;Tf,L(p) ;1;1 < T P (a*) ; ( T J , L (p) ;1;1 • TP (a) ;T'DL(p) ;l;l) 

+ l ' u ; T ^ L ( p ) ; l ; l 

iff (by properties of right-ideal relations) 

TP (a*) ;T j , L (p ) ; l ; l < TP (a*) ; (T'DL{p)-\-l • TP (a) ;T'DL(p) ;l;l) 

+ l ' u ; r f , L ( p ) ; l ; l . 

If we call q the term Tp L (p) ; 1, the last equation is equivalent to 

TP (a)* ;q;l < TP (a)* ; (^T • TP (a) ;q;l) + q;l, 

which is an instance of Ax. 12 in Def. 6.24. 
(A8) That T'DL([a](p - > ? ) - > ([a]p -> \a]q)) = ul, follows from the proof 
of Thm. 6.8. 

If the proof has length greater than 1, then p was obtained by applying 
either modus ponens or generalization. That these rules preserve provability 
in fork algebras was already proved in Thm. 6.8. 
•4=) Let us assume that \~CFL TDL(<P), but \/DL ¥• Then there exists a 
dynamic model 97? = (W,T,6) in which <p does not hold. By applying 
Lemma 6.3, from 971 we can construct a closure fork model T = {21, m) 
satisfying: 

dom (m (TDL (<£>))) = T(</>) . 

Since ip is not valid in 9Jt, must be r(ip) =£ W, and thus, there exists 
an element from W which is not in dom (m(TD/,(v?))). Then, in 21, the 
equation TOL((P) = 1 does not hold, and thus it is not provable, which 
leads to a contradiction. • 

file:///~cfl
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6.8 The Fork Logic FL' 

The logic FL' (to be used in the remaining part of this chapter) is related 
both to FL and to ETFR, as follows from the definitions to be presented 
next. 

6.8.1 Syntax of FL' 

We will assume that there are infinite disjoint sets UreVar and CompVar 
such that IndVar = UreVarU CompVar. Intuitively, variables from UreVar 
will range over urelements, while those in CompVar will range over arbi­
trary elements in the base of fork algebras. 

Given a set of constant relation symbols P, we define the set of formulas 
of the logic FL' (denoted by ForkFor(P)) as the set 

{t1Rt2 : tut2 G IndTerm(<t), 0)* and R G RelDes(P) } . 

Notice that any set P of constant relation symbols determines a lan­
guage. These languages will be referred to as fork languages. We will 
denote the fork language on the set of constant relation symbols P by 
C{P). 

Notice also that the formulas in C(P) correspond to a subset of the 
atomic formulas in ForETFR{$,$,P) (cf. Def. 5.6). 

6.8.2 Semantics of FL' 

Because of the relationship between C{P) and ForETFR(%,$,P), the se­
mantics of FL' is naturally defined. For example, an adequate structure for 
C(P) will be an adequate structure for ETFR(0,0, P) as defined in Def. 5.11. 
In a similar way, the notion of model follows Def. 5.14. Since the language 
of FL' is simpler than the language of ForETFR(%, 0, P), we will present a 
simplified version of the definition of ETFR model that we will use in the 
remaining part of the chapter. 

Definition 6.27 A fork model for a language C{X) is a structure T = 
{21, m) such that 

(1) 21GSPFAU, 
(2) m : RelVar U X —> A is the meaning function, and 
(3) m(l') = Id. 
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Clearly m extends homomorphically to a function m' : RelDes(X) —> A. 
For the sake of simplicity we will denote both m and m' by m. Notice that 
in particular m(0) = 0 and m(l) = V, the greatest relation of the fork 
algebra 21. Notice that the class of FL' models corresponds to SPFM. 

The notion of valuation differs from Def. 5.12, though. This is due to 
the partition of IndVar into the sets UreVar and CompVar. 

Definition 6.28 Given T = (2l,m) e SPFM, a valuation over T is a 
mapping v : IndVar —* U& satisfying 

(1) v(x) G Urel% if x £ UreVar, 
(2) v(x) £ U% if x G CompVar. 

Every valuation i/ extends homomorphically to a mapping v' : IndTerm —• 
£/<a- We will denote both u and u' by ZA 

The notion of satisfiability of a formula by a valuation is just a simpli­
fication of Def. 5.15 

Definition 6.29 A fork formula t\Rt2 is satisfied in T = (21,m) G 
SPFM by a valuation v (denoted by T,v \=FL' tiRt2) if (Vv(ti),Vv(t2)) e 
m(R). 

Definition 6.30 A fork formula tiRt2 is true in T € SPFM (denoted by 
T \=FU t\Rt2) if f° r every valuation v, T, v \=FL' t\Rt2-

Definition 6.31 A fork formula t\ Rt2 is valid in FL' (denoted by \=FU 
t\ Rt2) if it is true in every F e SPFM. 

This notion of validity extends in a natural way to sequences of formulas 

7i» 72,--•, Ik-

Definition 6.32 A sequence of formulas 71,72, • • •, 7fc is valid if for every 

fork model T and every valuation v over F, there exists i, 1 < i < k, such 

that T, v \=FU -a. 

Finally, given sequences of formulas T i , . . . , Tn, we define: 

Definition 6.33 The family of sequences of formulas (rj)i<j<n is valid 
if for all i, 1 < i < n, the sequence Tj is valid. 
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6.9 A Rasiowa-Sikorski Calculus for FL' 

The original Rasiowa-Sikorski proof system presented in [H. Rasiowa et 
al. (1963)] refers to the classical predicate logic. The system is designed 
for verification of validity of formulas of this logic. It consists of a pair of 
rules for each propositional connective and each quantifier. Every pair of 
rules, in turn, consists of a 'positive' rule and a 'negative' rule. A positive 
(resp. negative) rule exhibits the logical behavior of the underlying connec­
tive or quantifier (negated connective or negated quantifier). For example, 
the rules for conjunction are the following. 

T,aAf3,A (PA) 
T,a,A r , /? ,A 

r , i ( t t A / ? ) , A (NA) 
T.-.a.-./J.A 

The system operates in a top-down manner. Application of a rule re­
sults in the decomposition of a given formula into the formulas that are 
the arguments of a respective connective or quantifier. In general, the 
rules apply to finite sequences of formulas. To apply a rule we choose 
a formula in a sequence that is to be decomposed and we replace it by 
its components, thus obtaining either a single new sequence (for 'or'-like 
connectives) or a pair of sequences (for 'and'-like connectives). In the 
process of decomposition we form a tree whose nodes consist of finite se­
quences of formulas. We stop applying rules to the formulas in a node 
after obtaining an axiom sequence (appropriately defined) or when none 
of the rules is applicable to the formulas in this node. If the decompo­
sition tree of a given formula is finite, then its validity can be syntacti­
cally recognized from the form of the sequences appearing in the leaves 
of the tree. In the present section we define a Rasiowa-Sikorski style sys­
tem for the fork logic FL'. In [R. Maddux (1983)] Maddux presented a 
sequent calculus for relation algebras. The system we present here is an 
extension of the proof system presented in Orlowska [E. Orlowska (1988); 
E. Orlowska (1995)]. The system consists of a positive and a negative de­
composition rule for each relational operation from the language of fork 
logic, and also of specific rules that reflect properties of the injective func­
tion * and the relational constant 1'. This calculus can be considered a 
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proof system for fork algebras in the sense that whenever we want to prove 
an equation R = l, it suffices to prove in the calculus the formula xRy. 

6.9.1 The Deduction System for FL' 

In this subsection we will present the rules of the sequent calculus FLC for 
the fork logic FL'. Since we are dealing with fork algebras with urelements 
(required in order to interpret first-order theories), the calculus we present 
is more involved than a calculus for fork algebras when no assumption is 
done on the existence of urelements. 

T,xR+Sy,A (P + ) £,xii+5y,A (N+) 
T,xRy,xSy,A T,xRy,A T,xSy,A 

T,xR-Sy,A (P-) r,xfl^Sy,A (AT-) 
T, xRy, A T, xSy, A T, xRy, xSy, A 

T,xR;Sy,A (P;) _ r,xR^Sy,A_ _ (AT;) 
r,xRz,A,xR;Sy T,zSy,A,xR;Sy r,xRzx, z^Sy, A T,xRz2,z2Sy,A 

T, x%, A (N~) 
r,xRy,A 

V,xRy,A (P") T,xRy,A (AT) 
T, yRx, A T, yRx, A 

T,xRVSy,A (PV) 
r,!/l'u*i;,A,a;i{VS!/ V,xRu, A,xRVSy T,xSv, A,xRS7Sy 

T,xRVSy,A (iVV) 
r,y0'ui *vi,xRui,xSvi, A F,y0'u2 *V2,xRu2,xSv2,A 
T,y0'u3 *V3,xRu3,xSv3,A T,yQ'u4 *V4,xRu4,xSv4,A 

r,x1*x2Vyi*y2,A (PV) r,ii*x20'i/l*V2,A (NV) 
T.xiTyi.A r,x2l'y2,A r,xiO'j/i,x20'y2,A 

T,: 

r, 

r,xi 

r,xPy,A 
vl'z,xRy, A F,zRy,xRy,A 

T, xRy, A 
xRz,xRy,A T,zV 

T,xVy,A 
T,yVx,A,xVy 

T,xVy,A 
'z,A,xVy T,zVy, 

V,xVy,A 

y,xRy,A 

(Sym) 

I 
A,xl'y 

(l'») 

(1'6) 

[Trans) 

l (Cut) 
r, x * uVy * v, A, xVy T,x* uO'y *v,A,xl'y 

L_(tf) 
r .xl 'y 
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In rule (P;), z G IndTerm^ is arbitrary. In rule (N;), z\ G UreVar 
and Z2 G CompVar. In rule (PV) , u, v G IndTerm are arbitrary. In 
rule (iVV), ui,U2,vi,V3 G UreVar and W3,U4,W2,̂ 4 G CompVar. In rules 
( l ' a ) and (l'&), z G IndVar is arbitrary. In rule (Trans), z G IndTerm is 
arbitrary. In rule (Cut), u, t; G IndTerm are arbitrary. Finally, in rule (£/), 
x G Ure Var and w G IndTerm \ Ure Var. 

Definition 6.34 A fork formula t\ Rt2 is called indecomposable if it sat­
isfies either of the following conditions. 

(1) R G RelVar U RelConst, 
(2) R = 5 and 5 G i?e/Var U RelConst, 
(3) i ?G{ l ' , 0 ' } . 

Definition 6.35 A sequence of formulas T is called indecomposable if all 
the formulas in T are indecomposable. 

Definition 6.36 A sequence of formulas Y is called fundamental if either 
of the following is true. 

(1) r contains simultaneously the formulas tiRt2 and tiRt2, for some 
ti,t2 £ IndTerm and R G RelDes. 

(2) r contains the formula tVt for some t G IndTerm. 

Definition 6.37 Let T be a tree satisfying: 

(1) Each node contains a finite sequence of fork formulas. 
(2) If the sequences of fork formulas Ai , . . . ,A / t are the immediate 

successors of the sequence of fork formulas T, then there exists an 
instance of a rule from FLC of form 

r 
Ai A2 ••• Afc ' 

Then, T is a proof tree. 

A branch in a proof tree is called closed if it ends in a fundamental 
sequence. 

Definition 6.38 A formula tiRt2 is provable in the calculus FLC iff 
there exists a proof tree T satisfying: 

t in order to simplify the notation, from here on we will refer to the set /n<2Term(0,0)* 
by IndTerm. 
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(1) T is finite, 
(2) h Rt2 is the root of T, 
(3) Each leaf of T contains a fundamental sequence. 

6.9.2 Soundness and Completeness of the Calculus FLC 

Theorem 6.12 The calculus FLC is sound with respect to FL'. 

Proof The proof proceeds in two steps. First, we prove that for any rule 
the upper sequence of the rule is valid if and only if all the lower sequences 
are valid. This property of the rules will be referred to as their admissibility. 
Once the first step is established, the second step is an induction on the 
structure of the proof tree as follows: 

(1) If the tree has height 1 (i.e., the root is a fundamental sequence), 
then it is trivially valid. 

(2) Assume that if the tree has height less than or equal to n, then the 
fact that all leaves contain fundamental sequences implies that the 
sequence in the root is valid. 

(3) Let T be a tree with height n + 1. If the transition from the root 
to the nodes in the first level was obtained applying a rule 72. of the 
form 

r 
ri r2 ... rfc' 

let us call Ti (1 < i < k) the subtree of T with root IV Since for all 
i the height of Ti is less or equal than n and all the leaves contain 
fundamental sequences, the root of each Ti must contain a valid 
sequence. Since rules preserve validity in both directions, then the 
sequence T must be valid, as was to be proved. 

Let us show as an example that the rule (PV) is admissible. The 
admissibility of the remaining rules is proved in a similar way. 

Let us consider a sequence of fork formulas T, t\ RVSt2, A from a lan­
guage C(X). Let M = (21, m) be a fork model, and let i / b e a valuation 
over M. 

IiAi,v \=pi' T,tiR'VSt2, A, then the following three possibilities arise: 

(1) M, v \=FL, 7, with 7 e T, 
(2) M,v \=FL, 8, with 8 € A, 



108 Algebraization of Non-Classical Logics 

(3) M,v\=Fi/hRVSt2. 

If (1) or (2) are true, then it is immediate that the three sequences in 
the lower part of the rule (PV) are satisfied in the fork model M. by the 
valuation v. If (3) is true, then, since the fork formula tiRVSt2 is repeated 
in the three sequences in the lower part of the rule, then these sequences 
are also satisfied in the fork model M. by the valuation v. 

On the other hand, if 

- M,v\=FL> r,t2Vu*v,A,t1RVSt2, 
- M,u \=FL' T,tiRu,A,tiRWSt2, and 
- M,V\=FU T,tiSv,A,tiRWSt2, 

then the following four possibilities arise: 

(1) M, v \=FU 7 w i t r i 7 G T, 
(2) M,v\=FL> 5 with 8 £ A, 
(3) M,v\=FL>hRVSt2, 
(4) M,u \=FL' t2Yu*v, fffl,v \=FL' tiRu, and 9Jt,v \=Fy t\Sv. 

If (1), (2) or (3) are true then clearly the sequence of fork formulas 
r , t\RVSt2, A is satisfied in the fork model M. by the valuation v. If (4) is 
true, then, by definition of fork (Def. 3.1), M,v \=FL' tiRVSt2 and thus, 
M,v\=FL>T,t1RVSt2,A. • 

Definition 6.39 A proof tree T of a sequence of formulas T is called 
saturated if, intuitively, all the applicable rules were applied in the open 
branches. Formally speaking, a proof tree of T is called saturated if for 
every open branch B, the following conditions are satisfied: 

(1) If xR+Sy e B, then both xRy S B and xSy € B by an applica­
tion of rule ( P + ) . 

(2) If xR+Sy £ B, then either xRy e B or xSy e B by an application 
of rule (N + ) . 

(3) If xR-Sy S B, then either xRy 6 B or xSy £ B by an application 
of rule (P-). 

(4) IixR-Sy £ B, then both xRy £ B and xSy £ B by an application 
of rule (N-). 

(5) If xRy £ B, then xRy £ B by an application of rule (N~). 
(6) If xR;Sy £ B, then for all t £ IndTerm, either xRt £ B or 

tSy £ B by an application of rule (P; ) . 
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(7) If xR;Sy £ B, then for some z G IndVar both xRz G B and 
^iSy G -B by an application of rule (N;). 

(8 

(9 
(10 

(11 

(12 

(13 

(14 
(15 

(16 

(17 

(18 

(19 

If xRy G B, then yRx G B by an application of rule (Pv). 

If xRy G B, then yRx 6 B by an application of rule (iVv). 
If re * yVu * v G B, then either arl'u G B or yVv G 5 by an 
application of rule (PV). 
If a; * yO'u * v £ B then both zO'u G 5 and ?/0'w G B by an 
application of rule (NV). 
If rcRj/ G 5 , then for all z G IndVar either xV z £ B or zi?y £ -^ 
by an application of rule (1'0)-
If xRy G B, then for all z G IndVar either xiJx £ B or zVy £ B 
by an application of rule ( l ' t ) . 
If xV y G B, then y 1' a; G B by an application of rule Sym. 
HxVy £ B, then for all z G IndTerm either s F z e B o r z l ' t / e f i 
by an application of rule (Trans). 
If xVy £ B, then for all u, v £ IndTerm either x-kuVy-kv £ B or 
x * u0'y • v G -B by an application of rule (Cut). 
If xRV Sy G B, then for all u,v £ IndTerm one of the formulas 
y l ' u * u , xi?u or z 5 v is in B by an application of rule (PV) . 
HxRVSy £ B, then there are u,v £ IndVar such that the formulas 
yWu*v, xRu and xSv are in B by an application of rule (NV). 
For all x £ UreVar and y £ IndTerm \ UreVar, xVy £ B by an 
application of rule (U). 

Definition 6.40 Given X C RelConst, we define the order of i? G 
RelDes(X) (denoted by o(R)) by the conditions: 

(1) o(R) = 1 if R £ RelConst U RelVar U {1'}, 
(2) 0(B) = o(S) + 1 if R = S or # = S, 
(3) o(£) = max { 0(5), o(T) } + 1 if R = S+T, R = S-T, R = S;T, or 

Theorem 6.13 The calculus FLC is complete with respect to FL', i.e., 
if a formula tRt' is valid in FL', then it is provable in FLC. 

Proof Assume tRt' is not provable in FLC. Then, no proof tree exists 
that provides a proof for tRt'. In particular, no saturated tree with root 
tRt' provides a proof. Therefore, if T is a saturated tree, there must exist 
an infinite branch B in T. 
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Let = be the binary relation on IndTerrn defined by 

x = y <=*> xVy fi B . 

Let us prove that = is an equivalence relation. 
Since for all t G IndTerrn tVt £ B (otherwise B would contain a fun­

damental sequence), = is reflexive. 
If ti,t2 G IndTerrn satisfy t\ = t2 (or equivalently til't2 ^ B), then 

t2 = t\. Otherwise, if t2Vti G B, then, by application of the rule (Sym) 
t\ V t2 G B, which is a contradiction. 

If t\ = t2 and t2 = t$ (tiVt2 £ B and t2Vt3 £ B), let us show that 
t\ = t3. If ti ^ t3, then til '£3 G B. Thus, by one application of the rule 
(Trans) either t\ Vt2 G B or t2 V t3 G B, which is a contradiction. 

Let 21 be the FullPFA with underlying domain {|a:| : x G IndTerrn } and 
pairing function * defined by |x |* |y | = |x*i/| . If |:ci| = \x2\ and \yi\ = \y2\ 
then must be \x± *yi\ = \x2 *y2\. Otherwise, if \xi *y\\ ^ \x2 *y2\, then 
xx*yiY x2*y2 G B. Applying rule (PI ' ) either x\Vx2 G B or y\Vy2 G B, 
which is a contradiction. Then, * is a well-defined function. 

Let us check that * is injective. If |*i|*|£2| = |*3|*|*4| then, by definition 
of*, |ti*t2 | = |t3**4|. Thus,«i*t2l'*3**4 £ B. If\ti\ + |t3 J then ti 1't3 G B. 
Applying the rule (Cut) either £1 * t2 V t3 * £4 G B or tx * t20't3 * £4 G B. 
Since ti * t2Yt3 -kt4 £ B, then ti * £20'£3 * t 4 £ B. Applying rule (AT) 
yields that tiWtz G B, thus 5 would be a closed branch, which contradicts 
our assumptions. We then conclude that \t\\ = |*31- In a similar way we 
prove that \t2\ = | t j | . 

Notice that Urel<n = { |a;| : x G UreVar }, because if \x\ = \t\\* \t2\ then 
|a;| = |ij *£2 | . Then, x l ' t i *t2 £ B. By applying rule (U) we arrive at a 
contradiction. Thus, 21 G SPFAU. 

Let us define, for R G RelVar U RelConst, 

<|*i|,|*2|> G m(/2) <̂ => tiRt2$B. 

Let us check that m is well defined. Let us see that whenever t\ = £3 and 
t2 = t4, if (|*i|,|t2|> e m(R) then <|t3|, |*4|> G m(fl). Since (|ti | , | i2 |) € 
m(R), hRt2 <£ B. If (|i3|,|i4|) $ m(R), then i3fl*4 G B. Applying 
rule ( l ' a ) implies that either t3Vti G B or tx i? i4 G 5 . If t 3 l ' t i G 5 , 
applying rule (Sym) implies that t\Yt3 G B. Since i i l '*3 ^ B, then 
£1 .Rtj G B. Applying rule (l'j,) implies that either £1 i?£2 G B or £41' t2 G B. 
If t±Vt2 G 5 , one application of rule (Sym) would imply that t2Vt4 G B, 
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which is not the case. Thus, t\ Rt2 G B which also leads to a contradiction. 
We have then shown that (|t3|, \t4\) G m(R). 

Therefore the structure M = (21,m) belongs to SPFM. 
Let v be the valuation defined by u(x) = \x\, for x G IndVar. Let us 

show by induction that Vv{t) = \t\ for all t G IndTerm. By definition it 
is true for variables. If t = ti * t2, Vv(t) = Vu(t\ * t2) = Vv{t{) * Vv(t2) = 

| t i | * | i 2 | = |*i*<2|-
Let us define 

S = {a G ForkFor : M, v \=FL> a A a € B} . 

Notice that since tRt' is valid, M, v \=py tRt', and thus 5 ^ 0 . Then, 
since the set S is well-ordered by o, by Zorn's lemma S has a minimum 
element a'. 

Notice that a' cannot have the shape til '^2 because, since a' G S, 
%v \=FL' t\Vt2. Then, it must be \t\\ = \t2\, which implies tiVt2 £ B, a 
contradiction. 

Notice also that a' cannot have any of the following shapes: 

t\Rt2, t\Rt2, tiRt2, 
t\R-\- St2, tiR-\- St2, t\R' ot2, 
t\R-St2, t\R\St2, t\R\St2, 

because in any of this cases a formula a" appears in S satisfying o(a") < 
o(a'), contradicting the minimality of a'. 

If a' = tiR;St2, by definition of the saturated tree there exists a level 
in B in which we have a derivation with shape 

iy.aMV (P;) 
ri',tifiz,r2

/
)a' ri',z5t2,r2

,
la

/ 

and z satisfies M,v \=FU t\Rz and M,v \=FU zSt2. Therefore, there 
exists a" G S with o(a") < o(a'). 

If a' = t\ RVSt2, by definition of the saturated tree there exists a level 
in B in which we have a derivation with shape 

iy,aMy (PV) 
Ti,t2Vu-kv,r2',a' rY.ti-Ru.lY.a' r i ' , t i 5 v , r 2 ' , a ' 

and u and v satisfy M, v \=FU h 1'u*v, M, v \=FU t\Ru, and M, v \=FL' 
t2Sv. Therefore there exists a" G S with o(a") < o(a'). 
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From the previous arguments, it follows that a' must be indecompos­
able. 

If a' = tiQt-2 for some Q e RelVar U RelConst, and £1,^2 S IndTerm, 
then, since M,,v \=FU a''> (l^ili K2I) € m(Q), but this is so if and only if 
(by definition of m), t\Qti ^ 5 , which leads to a contradiction. 

If a ' = t\Qti for some Q € RelVar U RelConst, and £1,̂ 2 G IndTerm, 
then, since A4,i/ |=FL' a', (|*i|,|£2|) ^ "i(<5) or, equivalently, tiQt2 € 5 . 
Since t\Qti £ B too, B is closed, which is a contradiction. 

If a ' = £i0't2 for t\,t2 € IndTerm, then, since .4, t> |=FL' a', (\t\\, \tz\) € 
m(O'), and thus \ti\ ̂  |£2|. This implies that ii l '^2 G -B and also that B is 
closed, which is a contradiction. • 

6.9.3 Examples of Proofs in the Calculus FLC 

As an exercise let us show that some valid properties of fork algebras are 
provable in the calculus FLC. As a general practice we will sometimes 
omit some formulas when passing from a level to the level below, provided 
the formulas are not required to obtain the fundamental sequences. This 
will not affect the soundness of the calculus, and will simplify reading the 
proofs. 

Let us prove that (RVS) ; (TVQ)" < R;f • S;Q. In order to start 
the derivation, we need first to convert the formula into an equation of the 
form t = 1. Notice that in general, R< S <=> # + S = 1. Then, 

x(flVS) ; (TVQY + R\f-S-Qy (P+) 

x(RVS) ; (TVQTy,xR;f-S;Qy (AT;) 
xRVSzi, zi {TVQYy,xR;f-S;Qy xR~VSz2,z2(TVQyy,xR;f-S;Qy 

In the sequence S j , z\ € UreVar, while in £2; zi S CompVar. Let us 
analyze each sequence. 

If we apply the rule (iVV) on sequence £1, then we obtain the following 
four sequences 

(1) z\0''ui-kvi,xRui,xSvi,z\{TVQyy,xR;T-S;Qy, with u\ and V\ 
from UreVar, 

(2) ziO'v,2*V2,xRu2,xSv2,zi(T'VQyy,xR;T • S;Qy, with u2 from 
UreVar and v2 from CompVar, 
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(3) zi0 'u3 * v3,x~Ru3,x'Sv3,z1(TVQyy,xR;f-S;Qy, with u3 from 
Comp Var and v3 from Ure Var, 

(4) ziQ'ui*v4L,x~Rui,xSvi,zi(T'VQyy,xR-,f-S-,Qy, with the indi­
vidual variables u^ and U4 from CompVar. 

Any of the four branches is closed by applying the rule (U) once in each 
branch, adding the fork formula z\V Ui *Vi, 1 < i < 4. 

Regarding branch S2, applying rule (iVV) we obtain (as with Si ) the 
following four sequences 

(1) Z20,ui*vi,xR~ui,xSvi,z2{TVQYy,xR;T-S;Qy, with u\ and v\ 
from UreVar, 

(2) z20'u2 * v2,xRu2,xSv2,z2(TVQyy,xR;T-S;Qy, with U2 from 
UreVar and «2 from CompVar, 

(3) z20'u3 * v3,xRu3,xSv3,z2(T
J\/Qyy,xR;T-S;Qy, with W3 from 

CompVar and V3 from [/reVar, 
(4) -z20'u4 *V4,xRu4,xSv4,z2(TVQyy,xR;T-S;Qy, with the indi­

vidual variables U4 and V4 from CompVar. 

We then proceed in the same way with the four branches, as follows. 

z2 0'ixj * «j, XR~Ui,xSvi, 22 {TVQYy,xR;f-S;Qy (AT) 

Z20,Uj •kvi,xRui,xSvi,yTVQz2,xR;T-S;Qy (l'i,) 
Z20'ui *Vi,xRui,xSvi,yTVQui •kvi,yTVQz2,xR;T-S\Qy Z2Q,Ui*vi,ui*viVz2 
- „ < „ ' 

S 3 S4 

Regarding branch £4, we have 

z20'v-i * Vi,Ui *VjVz2 {Sym) 
Z20

,Ui *Vi,Z2VUi -kVi 

The last sequence is clearly fundamental, and thus the branch is closed. 
Regarding branch S3, we proceed as follows. 

Z2WUi*Vi,xR~Ui,x~Svi,yTVQui*Vj,yTVQz2,xR-,f -S-,t2y (JVV) 
xRuj,xSvi,Ui *VjO'rj *Sj,yTrj,yQsj,xR;T-S;Qy (P-) 

xRui,u*ViO'rj * sj,yTrj,xR;Ty xSvi,Ui *ViO'rj * Sj,yQsj,xS;Qy 
' v ' > v ' 

Since none of the sequences £5,;^ or ^e,ij are closed, we will derive a 
closed tree for each sequence. For the sequences S5 i,j we have: 
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xRui,Ui -kViOWj -k Sj,yTrj,xR;Ty (NV) 

xRui,UiO'rj,ViO'Sj,yTrj,xR;Ty (P;) 

UjOWj^Tr^Uify (Pv) 

UjOfr^yTr^yTuj (Vb) 

xRui,xRui yTui,yTui UiO'rj,UiV rj 

Finally, for the sequences ^6,i,j we have: 

xSvi,Ui -kViO'rj * Sj,yQsj,xS;Qy (NV) 

xSvi,ui0
,rj,vi0':Sj,yQsj,xS;Qy (P;) 

ViO,s,yQs,viQy (P") 

ViWs,yQs,yQvi (Vb) 

xSvi,xSvi yQvi,yQvi Uj 0' Sj, Wj 1' Sj 

Let us now prove the other inclusion, namely that 

R-f • S;Q<{RVS)-(TVQT . 

xR;f • S;Q + (RV S) ; (TVQ) '» (P + ) 

xR;f • S;Qy,x(RVS) ;(TVQYy (N•) 

xR;fy,xS;$y,x(RVS) ;(TVQYy (N;) 

i f l t i i . u i T y , x S ; Q y , x ( R V S ) ;(TVQTy x~Ru2,u2fy,xS;Qy,x{RVS) ;(TVQ)"y 

In the sequence ©i, «i G UreVar and 1*2 € CompVar, We will proceed 
the derivation with ©i, since the same steps can be applied indistinctly to 
©2. 

xRui,u1fy,xS;Qy,x(RVS);(TVQyy (N;) 

x~Rui,uxfy, x'5v1,v1$y, x(RV S);(TVQ)"y xR~u1,u1fy,x'Sv2,V2$y,x(RVS);(TVQ)''y 

In sequences ©3 and ©4, v\ £ UreVar and V2 £ CompVar. We will 
proceed the derivation with ©3, although the same steps apply to sequence 

©4-
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xRu1,ulfy,x'Svx,vlQy,x(RVS) ; ( rVQ)"y (AT) 

x~Ru1,yTu1,x~Svl,v1Qy,x{RV S) ;(TVQ)"y (AT) 

i g m . y T m . g ^ x . y ^ ^ ^ V S J K r V Q r y (P;) 

xi?u1 )a;5wi,x(i?V5)wi *ui yTui,yQv\,u\ *vi(TVQYy 
v v ' y v ' 

e5 e6 

Since both sequences Q5 and ©6 are not fundamental, we will proceed 
with the derivation. For sequence 65 we have: 

xRui,xSvi,xR^7Sui*v± (PV) 
ui*v\Vu\*vi xRui,xRu\ xSv\,xSv\ 

The last sequences are all fundamental. 
Finally, for sequence &e we have: 

yTui ,yg i ) i ,u i*Bi(TVQ)" i ) (FQ 

y f u i , y q « i , y r v g u i * « i _ (PV) 
ui • «i 1'ui * V! yTui,yTui yQvi,yQvi 

6.10 A Relat ional Proof Sys tem for Intui t ionist ic Logic 

In this section we prove interpret ability of intuitionistic logic in the fork 
logic FL' and extend the proof system FLC to a relational proof system 
for intuitionistic logic. 

6.10.1 Intuitionistic Logic 

The syntax and semantics of the intuitionistic logic (Int) are defined as 
follows. 

Definition 6.41 The alphabet of Int is given by: 

(1) an infinite countable set of propositional variables, that will be 
denoted by PropVar, 

(2) the set of propositional connectives { -1, V, A, —> }, and 
(3) the set of auxiliary symbols { "(", ",", ")" }. 

Definition 6.42 The set of intuitionistic formulas (denoted by IntFor) 
is the smallest set satisfying 
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(1) PropVar C IntFor, 
(2) lia,(3& IntFor, then {(->a), {a V/3), (a A /?), (a - • j3) } C intfbr. 

Definition 6.43 An intuitionistic model is a triple (W,R,m) in which 

(1) W^9, 
(2) i? C W x W is a reflexive and transitive relation, 
(3) m : PropVar —> P (W) satisfies the heredity condition given by: 

If wRw' and u> € m(p), then w' G m(p) . 

Definition 6.44 Let 3 = (W, R, m) be an intuitionistic model. A for­
mula a is satisfied in a world u; € W (denoted by 3, w \=[nt «) if the 
following conditions are satisfied: 

a = pi £ Prop Var : 

3, w \=int Pi iff w G m(pi) . 

a = -./? : 

3, «> h/nt -/? iff ( W G W) (wi?w' =* 3, w' ¥Int /?) . 

a = /?V7 : 

3, w |=/™t P v 7 iff 3, IU |=/nt /3 or 3, w |=/n t 7 . 

a = (3 A7 : 

3, w |=/nt /? A 7 iff J, to |=/nt /? and 3, w \=Int 7 . 

a = (3 —• 7 : 

3 , to |=/„t Z3 -* 7 in? 

( W G W) (wRw' and 3, w/ |=/nt /? implies 3, w' (=/nt 7) . 

Definition 6.45 A formula a G IntFor is true in an intuitionistic model 
3 = (W, # , m) (denoted by 3 \=int a) if, for all w G W, 3, w |=/n t a. 

Definition 6.46 A formula is Int-valid if it is valid in all intuitionistic 
models. 
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6.10.2 Interpretability of Intuitionistic Logic in FL' 

In this section we will present a mapping Tj : IntFor —• RelDes that will 
allow us to interpret the logic Int in the logic FL'. 

Definition 6.47 Let us have a fork language with one constant symbol 
R interpreted as an accessibility relation from intuitionistic models. Let us 
define the recursive mapping Tj : IntFor —> RelDes as follows: 

(1) Ti{pi) = Ri with pi G PropVar and Ri G RelVar. 
(2) T/HO =£;!>(<*). 
(3) TI(aA(3)=TI(a)-TI((3). 
(4) TI(aVp)=TI(a)+TI((3). 

(5) TI{a^(3)=R-{TI{a).TI{(3)). 

Since the accessibility relation in intuitionistic models satisfies condi­
tions of reflexivity, transitivity and heredity, we will define abstract rela­
tional counterparts of these conditions, as follows: 

(CI) 
(C2) 
(C3) 
(C4) 
(C5) 
(C6) 

l'u < R, 
R\R S: Ri 
(Ri-R) \Ri = 1, 
Ri < ul for all i, 
Ri;l = Ri for all i, 

J 2 < u i ; i u -

(reflexivity) 
(transitivity) 

(heredity) 
(Ri has urelements in its domain) 

(Ri is right-ideal) 
(R is defined in the set of urelements) 

Lemma 6.4 Let 3 = (W,R',m) be an intuitionistic model. Then, there 
exists J- = (21, m') € SPFM constructed from 3 satisfying conditions (Cl)-
(C6) such that for all w € W and for all (p € IntFor 

3, w \=int if «=> w G dom (m' (Tj(y))). 

Proof Define 21 as the FullPFAU with set of urelements W, let m'(R) = 
R', and for each Ri G RelVar define m'(Ri) = { (x,y) : x G m(pj) }. Con­
ditions (C1)-(C6) hold in T because of the way m'(R) and m' (Ri) are 
defined. 

The remaining part of the proof proceeds by induction on the structure 
of the formula (p. 
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cp = pi G Prop Var : 

3, w \=Int pi iff w G m(pj) 

iff w G dom (m'(Ri)) 

iff w G dom (m' (T/ (P i))) . 

<p — -<a : 

3,w h/nt --Q! iff ( W G W) (tufl'u/ => a,tw'^/„ t a) 

iff ( W G W) (wR'w' ^w' <£ dom (m' (7/(a)))) 

iff 0u>' G W) (twfl'w' Aw' € dom (m' (T/(a)))) 

iff {$w' G A)((tw,iu') G m'(R)Aw' G dom (m'(T7(a)))) 

iff u; G dom (m'( tf) ;m'(T/(a))) 

iff w G dom (m' ( f l ;T/ (a) ) ) 

iff w Gdom(m'( r / ( - .a ) ) ) . 

tp = aV P : 

3,w \=Int aVP iS3,w \=Int a or J,ty (=/nt /? 

iff to G dom (m' (T/ (a))) or u> G dom (m' (T/ (/?))) 

iff io G dom (m' (T/ (a)) U m' (T/ (/?))) 

iff u; G dom (m' (T/ (a V /?))). 

(f = a A /3 : Proceeding along the same lines as we did with V, 

3, w \=i„t a A f3 iff w G dom (m' (T/ (a A /?))) . 

V? = a —* /? : 

3, w \=Int a -> /? 

iff ( W G W) (w fl'u;' A 3,u/ H/nt P ^ 3,w' |= / n t 7 ) 

iff ( V G W) {wR'w' A J, w' \=Int PA3,w' PInt 7) 

iff @u>' G W) («>#V Aw' £ dom (m' (Tj (/?))) A 

w' $ dom (m'(T/ (7)))) 

iff ( V e A)((iu,iu/) €m' ( JJ )A 

w' G dom (m' (T, (P)))Aw'$ dom (m' (T7 (7)))) 
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iff w G dom lm' (R) ; (m' (T/ (a)) -m' (T, (£))) J 

iff w G dom fm' (R; (VJ (a) • 2 H 0 ) ) ) 

iff w G dom (m' (7/ (a -> /?))). 
a 

Lemma 6.5 Let !F = (21, m) G SPFM satisfying conditions (C1)-(C6). 
Then, there exists an intuitionistic model 3 = (W,R',m') constructed from 
T such that for all w G W and for all <p G IntFor 

w G dom (m(Ti(ip))) <=$• 3,w\=Int<p. 

Proof Let us define W = Urel^, R' = m(R), and for all pt G PropVar 
define m'(pj) = dom (m(Ri)). Notice that by conditions (C1)-(C6), R' 
is a reflexive and transitive relation on W, and the heredity condition is 
satisfied by m'. The remaining part of the proof proceeds by induction on 
the structure of the formula <p. 

<P = Pi 

(p = ->a : 

w G dom (m (Tj(pj))) iff u; G dom (m (Ri)) 

iff w G m'(pi) 

iff 3,10 \=Int Pi­

ll) G dom (m (Tj(-ia))) 

iff w G dom (m (R;Tr(a))) 

iff w G dom f.R';m(T/(a))) 

iff (&// G 4) (wR'w' Aw' £ dom (m (Tj(a)))) 

iff ($w' £ W) (wR'w' Aw' £ dom (m (7/(a)))) 

iff ( W G W) (wiZ'tu' =• w' $ dom (m (7i(a)))) 

iff ( W G W) ( w f l V => 3, v/*i„t a) 

iff 3, w \=jnt -ia. 
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ip = aV f3 : 

w G dom (m(T/(a V/3))) 

iff w G dom (m (Tr(a)+7/(/3))) 

iff w G dom (m (T/(a)) U m (Tj (/?))) 

iff w G dom (m (T/(a))) or tu G dom (m (Tj (/?))) 

iff J, w |=/n t a o r 3 , w |= / n t /3 

iff J,™ \=lntavp. 

(p = a A ft 

w G dom (m(Tj(a A/?))) 

iff w G dom (m (T/(a) -T/(/3))) 

iff IU G dom (m (T/(a)) n m (Tj (/?))) 

iff tw G dom (m (Tj(a))) and w G dom (m (T/(/3))) 

iff 3, iy |=/„t a and 3, w |=/„t P 

iff 3,™ \=[nt a A p. 

<p = a —> P : 

u> G dom (m (Tj (a —> /?))) 

iff to G dom (m (R-, fa (a) -T/(y9)) J J 

iff iu € dom LR'; (m(T/(a)) •m(T/(/3)))N) 

iff ( ^ ' G W)(wR'w' A t o ' e dom (m(Tj(a))) 

A u / g dom (m(Tj(/?)))) 

iff ( W G W^iu^ ' to ' Aw' e dom (m(T/(a))) 

=>• «;' G dom (m(T/(/3)))) 

iff ( W G W) (wR'w' A 3,w' \=Int a =• Of, to' |= / n t /?) 

iff 3, w f=/nt a —> /?. 
a 

Let us denote by /C the class of those fork models (21, m) G SPFM where 
conditions (C1)-(C6) hold. In the remaining part of the chapter we will 
denote by FL the fork logic induced by the class of fork models K. in the 
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following way 

\=FLK xTy <=> \/M£lC(M f=FZ/ xTy) . 

Theorem 6.14 Let ip s IntFor. Then, given individual variables x £ 
Ure Var and y S Comp Var, 

\=int i> <=$• H F L * xTi(ip)y . 

Proof Let us prove the contrapositive. If ¥int ip, then there exists an 
intuitionistic model 3 = (W,R,m) and w £ W such that 3,w Y"jnt ip. 
Then, by Lemma 6.4 there exists a fork model T — (21, ml) e K, such 
that w ^ dom (m' (Tj {ip))). Let v be a valuation satisfying u{x) = w, then 
F,v¥pLK xTj(ip)y, and thus ¥pyc xTi(ip)y. 

li¥pi>c xTj(ip)y, then there exists a fork model T — (21,m) e K. 
and a valuation i/ such that {v{x),v(y)) £ m(Ti(tp)). Thus, i^(x) ^ 
dom (m(Ti(ip))). By Lemma 6.5 there exists an intuitionistic model 3 = 
(A, R', ml) such that 3, v(x) Y"int ip, and thus J^/nt 1/;. D 

6.10.3 A Fork Logic Calculus for Intuitionistic Logic 

In this subsection we will present a calculus for intuitionistic logic based on 
the calculus FLC. The calculus will be obtained by adding specific rules 
and modifying the notion of fundamental sequence in the calculus FLC. 
The calculus will be denoted by Int-FLC. 

Throughout this subsection we assume we are working with a fork lan­
guage £(R) with only one constant symbol as in Def. 6.47. 

Definition 6.48 A sequence of fork formulas T is Int-fundamental if any 
of the following conditions are true: 

(1) T is fundamental according to Def. 6.36, or 
(2) the fork formula xRx S T for some x G UreVar. 

Condition (2) reflects the property that the intuitionistic accessibility 
relation R is reflexive on the set of urelements. 

We define the intuitionistic calculus Int-FLC by adding the following 
specific rules to those of FLC. 

T,xRy,A (TranR) 
T,xRz,xRy,A T,zRy,xRy,A 
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T,xRjy,A (H) 
T,zRx,xRiy,A T,zRiy,xRiy,A 

T,xRiy,A (RI) 
T,xRiy,xRiZ,A 

T (RUr) T (VarUr) 
F,xRy T,xRiy 

In rules (TranR) and (H), z G UreVar is arbitrary. In rule (RI), 
z G IndTerm is arbitrary. In rule (RUr) either x or y belong to IndTerm \ 
UreVar, and in rule (VarUr), x G IndTerm \ UreVar. The admissibility 
of rule (TranR) is equivalent to the transitivity of the relation R. The 
admissibility of rule (H) is equivalent to the validity of the heredity con­
dition. The admissibility of rule (RI) is equivalent to relational variables 
being interpreted as right-ideal relations. The admissibility of rule (RUr) 
is equivalent to R being defined only on urelements. Finally, the admissi­
bility of rule (VarUr) is equivalent to variables having urelements in their 
domain. 

Notice that the last comments imply the soundness of the calculus Int-
FLC. 

Theorem 6.15 The calculus Int-FLC is sound with respect to the logic 
FLK, i.e., given tQt' G ForkFor 

\~Int-FLC tQt' => ^FL* tQt' . 

Definition 6.49 A proof tree T of a sequence of formulas T is Int-
saturated if in all open branches B, the following conditions are satisfied. 

(1) Conditions (1) through (19) from Def. 6.39, 
(2) If xRy G B, then, for each z G UreVar, either xRz G B or zRy G 

B by an application of rule (TranR). 
(3) If xRty G B (Rt G RelVar), then, for each z G UreVar, either 

zRx G B or zRty G B by an application of rule (H). 
(4) lixRiy e B (Ri e RelVar), then, for all z G IndTerm, xRtz G B 

by an application of rule (RI). 
(5) For all x,y G IndTerm such that x G IndTerm \ UreVar or y G 

IndTerm \ UreVar, xRy G B by an application of rule (RUr). 
(6) For all x G IndTerm \ UreVar and y G IndTerm, xRiy G B by an 

application of rule (VarUr). 

file:///~Int-FLC
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Theorem 6.16 The calculus Int-FLC is complete with respect to the 
logic FLK, i.e., given tQt' € ForkFor 

\=FLK tQt' = > • \~Int-FLC tQt' . 

Proof The proof will follow the lines of the proof of Thm. 6.13, and 
therefore the reader will be directed there for some parts. 

Assume tQt' is not provable in Int-FLC. Then no proof tree exists 
that provides a proof for tQt'. In particular, no /nt-saturated tree with 
root tQt' provides a proof. Therefore, if T is an /nt-saturated tree, there 
must exist an infinite branch B in T. 

Let = be the binary relation on IndTerm defined by 

x = y •$=>• xVy ^ B. 

The proof that = is an equivalence relation is the same as in Thm. 6.13. 
Let 21 be the FullPFAU with set of urelements { \x\ : x £ UreVar} and 

pairing function * defined by |a;|*|2/| = |a;*2/|. Proving that * is well defined 
and injective is done as in Thm. 6.13. 

Let us define, for R' £ RelVar U { R }, 

(\h\,\t2\) £ m(R') <^=> tiR't2<£B. 

That m is well-defined is proved as in Thm. 6.13. 
The relation m(R) is reflexive, for if there exists x £ Ure Var such that 

(|a;|, \x\) ^ m(R), then xRx £ B. Then B would be a closed branch, which 
is a contradiction. 

The relation m(R) is transitive, for if there are x\,x2,x-& £ UreVar such 
that (|a;i|,|i2|) € m(R), (|x2|, l^l) £ m(R) and (ja;i|, |x3|) ^ m(R), then 
xxRx2 $ B, x2Rxs $. B and xxRx3 £ B. Then, applying rule (TranR) 
either x\ Rx2 £ B or x2 Rx$ £ B, which is a contradiction. 

The heredity condition holds, for if there are xi,x2 £ UreVar and 
t £ IndTerm such that (|xi|, |t |) £ m(Ri) (Rt £ RelVar), (\xi\, \x2\) £ m(R) 
and (|x2|, \t\) £ m(Ri), then xiRrf <£ B, xxRx2 £ B and x2Rit £ B. Ap­
plying rule (H) either xxRtt £ B or x±Rx2 £ B, which is a contradiction. 

In a similar way we show that relational variables are interpreted as 
right-ideal relations. 

m(R) C Ure Var x Ure Var, for if there is t £ IndTerm \ Ure Var such 
that \t\ £ dom (m(R)) or |t| £ ran (m(R)), then applying rule (RUr) we 
arrive at a contradiction. 
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For all Ri G RelVar, dom (m (Ri)) C UreVar, for if there are £ G 
IndTerm \ UreVar and *' G IndTerm such that (|t|, |t'|) G m(Ri), then 
£i?j£' ^ 5 . Applying rule (VarUr) we arrive at a contradiction. 

Therefore the structure (2t,m) belongs to SPFM and satisfies (C l ) -
(C6). The remaining part of the proof is similar to the respective part of 
the proof of Thm. 6.13. • 

From Thm. 6.16 the corollary below immediately follows. 

Corollary 6.2 Given a formula <p G IntFor, x G UreVar, and y G 
CompVar, we have 

\=Int <P < = » \~Int-FLC xTi(cp)y . 

Proof From Thm. 6.14, for any formula ip G IntFor, x G UreVar, and 
y G CompVar, 

him V <^> |=FLK xTj(<p)y . (6.2) 

From Thms. 6.15 and 6.16, we then obtain 

hFL* xTi(<p)y « = > \~int-FLC xTj{<p)y . (6 .3) 

Joining (6.2) and (6.3), we then obtain 

hint <P «=*> \~Int-FLC xTl(<fi)y . 

• 
6.10.3.1 Example 

In order to see how the calculus works, let us consider a proof of the in-
tuitionistic tautology ->-i-ia —> ->a. According to Cor. 6.2, it suffices to 
prove that \-int-FLC xTi(-i-i-ia —> -*a)y. In order to keep an economic 
notation we will not apply the mapping Tj entirely from the beginning, but 
by parts according to our needs. Partial applications of mapping Tj will be 
evidenced using a rule denoted by (Tj). 

xTj(- i - i - ia —* - i a )y (Tj) 

zfl; (T/CI-.-.a)-17Fa))y (N;) 

xRz\,z\Ti (-i-i-ia) • Tj (-ia) y xRz2,Z2Tj ( - m a ) • T/ (-ia) y 
v v ' v v ' 

Ai A2 

file:///~Int-FLC
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In sequences Ai and A2, z\ £ UreVar and z2 £ CompVar. 

Regarding sequence A2, we have 

xRz2, gjTj (-.-.-.a) •r f(- .a)y (RUr) 

xRz2,Z2Ti(-i-i-ia)-Ti(-ia)y,xRz2 

The last sequence is fundamental, and thus the branch is closed. 
Regarding sequence Ai, we have 

a:flzi,sir,r(-.-1-.a)-rj(-.a)y (N-) 

xRz\, ziTj(-<-i-ta)y, ziTi(->a)y (AT-) 

gPzi , zi r/(-i-i-ia)j/,^i r/(-iq)y (T» 

xf l2 1 ,z i f l ;T f (^c t )y ,z 1 r J ( - l q)y (AT) 

xflz1,zifl;rJ(-.-1q)i/,ziTJ(-,a)y (7» 

xR~z1,z1R;TI{-,^a)y,ziR;TI(a)y (A/;) 

x.Rzi,ziP.;7/(-'-'a:)y,ziF-ti,t1T/(q)i/ xPzi , zi.R;T/(-.->q)y, zi P.<2, t2Tr(ct)y 
v ' > „ < 

A 3 A 4 

In sequences A3 and A4, t\ £ UreVar and t2 £ CompVar. 
Regarding sequence A3 we have: 

xR~zi,z1R;TI(->-,a)y,ziR~tutiTi(a)y (P;) 
xRzi,ziRti,ziRti,tiTi(a)y xRzx,t1TI(-i-:at)y,z1Rti,tiTI(a)y 

A 5 A 6 

Since the fork formulas z j i l t i and z\Rt\ occur in A5, this branch is 

closed. 
Regarding sequence Ae we have 

xR~zi,t1TI(-,-ia)y,z1R~ti,tiTI(a)y (Tr) 

xTtzutiR;TI(-«xjy,z1R~ti,tiTI(a)y(N)) 
xRzi,tiRvi,viTz(-ia)y,ziRti,tiTr(a)y xRzi,tiRv2,v2Ti(->a)y,zi~Rti,t1TI(a)y 

„ ' v „ 

A7 A 8 

In sequences A7 and As, Ui € UreVar and v2 £ CompVar. 
Regarding sequence A7 we have: 

xR~z1,t1R~v1,viTI(-na)y,ziR~tut1TI(a)y(TI) 

xTiz1,t1R'vi,viR;TI(a)y,ziR~t1,t1TI(a)y (AT) 

xliz1,tiRv1,v1R;Tr(a)y,ziR~h,t1Ti(a)y (P;) 
x Rzi, t\ Rv\ ,v\Rv\,z\Rt\,t\Tj (a) y xRz\,t\Rv\,viTj (q) y,ziRti,t\Tj (a) y 
' v v • 

A9 A10 
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Since the fork formula viRv\ occurs in A9, this branch is closed. 
Regarding sequence Ajo we have (denoting by T the term Ti(a)): 

xRz1,tx'Rvi,v1Ty,z1Rtl,t1Ty (H) 
x'Rz1,t1~Rvi,t1Rv1,v1Ty,zi~Rt1,tlTy x~Rzi, tt~Rvi, tiTy, viTy, ziSti, tj Ty 

A u A 12 

Since the fork formulas tiRvi and tiRvi occur in An, the branch is 
closed. In a similar way, since the fork formulas tiTi{a)y and t\Ti(a)y 
occur in A12, this branch is also closed. 

Regarding sequence As, we have: 

xRz1,t1Rv2,v2Ti(-ia)y,z1Rt1,tiTI(a)y (RUr) 

xRz1,t1Rv2,v2Ti(-^a)y,z1Rti,t1Ti(a)y,tiRv2 
v v ' 

A13 

Since the fork formulas t\Rv2 and t\Rv2 occur in A13, the branch is 
closed. 

Finally, regarding sequence A4 we have: 

xRz1,z1R;TI(^a)y,Zl^t2,t2Ti(a)y (RUr) 

xRzi,ziR;TI(-^-'a)y,z1Rt2,t2TI(a)y,ziRt2 

> w ' 
A 1 4 

Since z\Rt2 and z\Rt2 occur in A14, the branch is closed. 

6.11 A Relational Proof System for Minimal Intuitionistic 
Logic 

Minimal intuitionistic logic J was introduced by Johansson in 1936 [I. 
Johansson (1936)]. It differs from intuitionistic logic in that the axiom 
-.a -> (a —> /?) is deleted. In [M. Fitting (1969)], Fitting introduced a 
Kripke-style semantics for the logic J . A Kripke model for J is a system 
97t = (W,R,Q,m) where W is a nonempty set, R is a reflexive and transi­
tive relation on W, Q C W is a i?-closed subset of W (that is, if w S Q and 
(w,w') £ R, then w' £ Q), and m is a meaning function which is defined 
as being for the Kripke semantics of the intuitionistic logic Int with the 
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exception of the evaluation of negations: 

Wl, w \=j ->a iff 

for all w', if (w, w') e R, then M, w' ty=j a or w' 6 Q . 

Q is to be thought of as the set of those states of information which are 
inconsistent. The notion of truth of a formula in a model and validity are 
the same as for Int. It is known that a formula a is valid in J iff a is true 
in every finite model of J with antisymmetric relation R. 

Interpretability of J in fork logic FIl is established by a translation 
Tj of formulas of J into relational terms. It coincides with translation T/ 
except for the translation of negated formulas: 

Tj(^a)=R;(Tj(a)-Q) 

where R and Q are relational constants interpreted as the accessibility 
relation from models of J and the right ideal relation that is a counterpart 
of the set Q from these models. 

The relational proof system for J (that we will denote by J-FLC) con­
sists of all the rules of the proof system of fork logic, the specific rules for 
Int and the following specific rules: 

r,xQy,A (Ql) 
T,zQy,A,xQy T,zRx,A,xQy 

T,xQy,A (Q2) 
T,xQz,A,xQy 

E (Q3) 
T,xQy 

In rule (Ql) z £ UreVar, in rule (Q2) z € IndTerm, and in rule (Q3), 
x S IndTerm \ Ure Var and y € IndTerm. 

Rule (Ql) is admissible iff Q is Jt*-closed, rule (Q2) is admissible iff Q is 
a right-ideal relation, and rule (Q3) is admissible iff Q has only urelements 
in its domain. 

Notice that the abstract fork-algebraic equations 

(C7) : Q = QX 
(C8) : (R.Q) ;Q = 1, 
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(C9) : Q < ul , 

state that Q is an i?-closed, right-ideal relation whose domain is made of 
urelements. 

Let C(R, Q) be a fork language with two constant symbols. Let K,' be 
the class of those fork models (21, m) for the language C(R, Q) satisfying 
conditions (C1)-(C9). Then KJ induces a fork logic FL as follows: 

\=FVz. xTy <=• VM e £ ' (M \=FL. xTy) . 

Prom the admissibility of the specific rules (Q1)-(Q3) we obtain the 
following theorem on the soundness of the calculus J-FLC. 

Theorem 6.17 The calculus J-FLC is sound with respect to the logic 
FLK>, i.e., 

I- J-FLC xTy => \=FLK.< xTy . 

Definition 6.50 A proof tree T of a sequence of formulas T is J-saturated 
if in all open branches B, the following conditions are satisfied. 

(1) T is /rai-saturated, 
(2) UxQy G B, then, for all z € UreVar, either zQy € B or zRx € B 

applying rule (Ql), 
(3) If xQy G B, then, for all z G IndTerm, xQz G B applying rule 

(Q2), 
(4) For all x G IndTerm\ UreVar and y G IndTerm, xQy G B applying 

rule (<?3). 

Theorem 6.18 The calculus J-Int is complete with respect to the logic 
FLK', i.e., 

\=FLK.' xSy => hJ-FLC xSy . 

Proof The proof will follow the lines of the proof of Thm. 6.13, and 
therefore the reader will be directed there for some parts. 

Assume tSt' G ForkFor is valid in FL but is not provable in J-FLC. 
Then no proof tree exists that provides a proof for tSt'. In particular, 
no 7-saturated tree with root tSt' provides a proof. Therefore, if T is a 
J-saturated tree, there must exist an infinite branch B in T. 

Let = be the binary relation on IndTerm defined by 

x = y «=> xVy £ B . 
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The proof that = is an equivalence relation is as in Thm. 6.13. 
Let 21 be the FullPFAU with set of urelements { |x| : x G UreVar} and 

pairing function * defined by |z|*|y| = |z*y|- Proving that * is well defined 
and injective is done as in Thm. 6.13. 

Let us define, for R' G RelVar U { R, Q }, 

(l*i|,M> G m(R') <=> t1R't2<£B. 

That m is well-defined is proved as in Thm. 6.13. 
That R is reflexive, transitive and that the heredity condition holds are 

all proved as in Thm. 6.13. 
Assume that (\w\, \w'\) G m(R), (|tu|,|a;|) G m(Q) and (|to'|,|x|) ^ 

m(Q). Then, wRw' <£ B, wQx £ B, and w'Qx G B. Applying rule (Ql) 
we immediately arrive at a contradiction, and thus m(Q) is m(i2)-closed. 

Assume (|x|, \y\) G m(Q), but (|x|,|t|) ^ m(Q) for some t G IndTerm. 
Then, xQt G B. Since the tree T is J saturated, applying rule (Q2) we 
arrive at a contradiction, and thus m(Q) is right-ideal. 

In a similar way we show that relational variables are interpreted as 
right-ideal relations. 

If there are x G IndTerm\ UreVar and y G IndTerm such that (|x|, \y\) G 
m(R), then xRy <£ B. Applying rule (Q3), xRy G B, which is a contra­
diction. 

Therefore the structure (21, m) belongs to SPFM and satisfies (CI)-
(C9). 

Let v be the valuation defined by v{x) — |rc|, for x G IndVar. In 
Thm. 6.13 it is shown by induction that Vv{t) = \t\ for all t G IndTerm. 

The remaining part of the proof is as in Thm. 6.13. • 

In order to be able to reason in the calculus J-FLC for proving minimal 
intuitionistic properties we still need to show the interpretability of the 
logic J in the logic FLK . 

Lemma 6.6 Let J = (W, R', Q', m) be a minimal intuitionistic model. 
Then there exists a fork model F = (21, m ' ) G SPFM constructed from 
J satisfying conditions (Cl)-(C9) such that for all w G W and for all 
if € IntFor 

Z,w\=j<p «=> w G dom (m' (Tj(<p))) . 

Proof Let 21 be the FullPFAU with set of urelements W. Define m'(R) = 
R'. Let m'(Q) = {{x,y) :x€Q'}, and for each Ri G RelVar define 
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m'(Ri) — { (x, y) : x G m(pi) }. Conditions (C1)-(C9) hold because of how 
TO' is defined. 

The remaining part of the proof proceeds by induction on the structure 
of the formula <p and follows the lines of the proof of Lemma 6.4 except 
for the case of negation, where the semantics differ. For the negation we 
proceed as follows: 

iff ( W G W) {wR'w' => 3 , 0 ' ^ a V w ' e Q') 

iff ( W G W) {(w,w') G m'(R) => 

w' £ dom (TO' (Tj(a))) V w' G dom (TO'(Q))) 

iff ($w' G W) ((w,w'} G m'(R)A 

w' G dom (TO' (Tj(a))) A w' <£ dom (TO'(Q))) 

iff ($w' G A) ((w,w') G m'(R)A 

w' G dom (TO' (Tj(a))) A w' £ dom (TO'(Q))) 

iSw& dom fm'(i?); (TO' (Tj(a)) •m'(Q))) 

iff to G dom TTO' r ^ r ( ? M a ) ^ y ) ) 

iff io G dom (TO' (Tj(-.a))). 

a 

Lemma 6.7 LetT = (21,TO) G SPFM, satisfying conditions (Cl)-(C9). 
Then, there exists a minimal intuitionistic models = (W,R',Q',m') con­
structed from T such that for all w G Urel^ and for all ip G IntFor 

w G dom (m(Tj(<p))) <=> 3,u>\=j<p. 

Proof Let us define W = Urel<&, R' = m(R), Q' = dom (TO(Q)), and for 
all pi G PropVar define m'(pi) = dom (TO (Ri))- Notice that by conditions 
(C1)-(C9), R' is a reflexive and transitive relation on W, the heredity 
condition is satisfied by TO' and Q' is an i?-closed right-ideal relation. 

The remaining part of the proof proceeds by induction on the structure 
of the formula <p and follows the lines of the proof of Lemma 6.5, except 
for the case of the negation, where the semantics differ. For the negation 
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we proceed as follows: 

w £ dom (m (Tj(^a))) 

iff w £ dom (m (R; (Tj{a)-Q)}) 

iff w £ dom (m(R); (m {Tj(a)) -m(<9)) J 

iff (&i/G,4)((w,u/) G m(i?) 

A«) ' e dom (m(Tj(a))) A w' <£ dom (m(Q))) 

iff ( V G W) (wR'w' Aw' £ dom (m (Tj(a))) Aw' <£ Q') 

iff ( W G W) (wR'w' ^ w' i dom (m (Tj(a))) V w ' e Q') 

iff ( W G W) (wR'w' ^ 2,w'¥ja\/w' G Q') 

iff C,u; |=j -ia. 
D 

Theorem 6.19 Let ip G IntFor. Then, given x £ UreVar and y £ 
IndVar, 

|=j ^ «=> 1 = ^ , xTj(ip)y . 

Proof Let us prove the contrapositive. If )t j tp, then a minimal intu­
itionistic model 3 — (W, R', Q', m) exists and w £ W such that 3, w ¥ ip. 
Then, by Lemma 6.6 there exists T = (21, m') £ KJ such that w £ 
dom (m' (Tj (VO))- Let f be a valuation satisfying v{x) = w, then J7, v ¥FLK' 

xTj(i/s)y, and thusKF L ,c xTj(ij))y. 
If J^FLK:/ xTj(tp)y, then there exists J7 = (21,m) G /C' and a valuation 

v such that (i/(x),u(y)) <£ m(Tj(ip)). Thus, 1/(1) £ dom (m(Tj(ip))). By 
Lemma 6.7 a minimal intuitionistic model 3 exists such that 3, v[x) ¥j "ip, 
and thus J^j •0. D 

Prom Thms. 6.17, 6.18 and 6.19 the corollary below follows immediately. 

Corollary 6.3 Given (p £ IntFor, x £ UreVar and y G CompVar, 

\=J V <^=> "rj-FLC xTj(ip)y . 

Proof From Thm. 6.19, for any formula 95 € IntFor 

\=J<p ^ = * \=FL*' XTJ(<P)V • ( 6 - 4 ) 
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Prom Thms. 6.17 and 6.18, we then obtain 

\=FLR. xTj(<p)y «=*. ^J-FLC xTj{ip)y . (6.5) 

From (6.4) and (6.5), 

\=j <P <^=> \-J-FLC xTj(tp)y . 

D 

6.12 Relational Reasoning in Intermediate Logics 

Intermediate logics are the logics whose valid formulas include all the formu­
las that are valid in intuitionistic logic but not necessarily all the tautologies 
of classical logic. In that sense these logics are between intuitionistic and 
classical logic. For many intermediate logics a Kripke semantics is known. 
Below we give examples of conditions that the accessibility relation is sup­
posed to satisfy in Kripke models of some intermediate logics. 

(11) 3x\/y{xRy) 
(12) \/x3y (xRy A Vz (yRz -> y = z)) 
(13) Vxiy3z (zRx A zRy A Vt (tRx A tRy -> tRz)) 
(14) VarNfyVz (xRy A xRz -+ yRz V zRy V Vt (yRt -» zRt)) 
(15) ViVyVz (xRy A xi?z -» 3t (yi2t A zi?t)) 
(16) 3xVy (y^x-+ xRy) A MxizVt (xRz A xi2i - • ^zRt) 

The translation from formulas of intermediate logics into relational 
terms is the same as for formulas of intuitionistic logic. There are three 
methods of developing relational means of reasoning for intermediate logics 
within the framework of fork logic. 

6.12.1 Method 1 

We define a specific rule or a fundamental sequence for every condition 
on the accessibility relation in the underlying Kripke models of a given 
logic. The relational proof system for the logic consists in all the rules and 
fundamental sequences from the proof system of fork logic together with 
those new specific rules and/or fundamental sequences. For example, the 

file:///-j-flc
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rule corresponding to condition (14) is the following: 

T,yRz,zRy,zRt,A (R4) 
T,xRy,$,A T,xRz,$,A T,yRt,$,A 

where x is a variable. 

Proposition 6.1 Rule (i?4) is admissible in fork logic iff in every fork 
model the relation R satisfies condition (14). 

Proof =$) Notice that condition (14) is equivalent to the following: 

VzVyVzVi (zRy A xRz A yRt -» yRz V zRy V zRt) . 

Assume that rule (-R4) is admissible and suppose that in some fork model 
(21, m) condition (14) is not satisfied. Hence, for some valuation v in this 
model we have (v(x),i>(y)) € m(R), (v(x),u(z)) € m(R), (v(y),v(t)) € 
m(R), <i/fo),i/(z)) i m(R), {v{z),v{y)) $ m(fl), and (v{z),v(t)) $ m(fl). 
Consider an instance of rule (i?4) with T = xRy,xRz,yRt, and with empty 
A. Then, all the lower sequences of the rule are valid, so the upper sequence 
must be valid as well. But in the above model none of the formulas of the 
upper sequence are true under valuation i>, a contradiction. 
<=) It is clear that this implication also holds. • 

6.12.2 Method 2 

We use the following deduction theorem for fork algebras with urelements. 

Theorem 6.20 Let 7 and 7' be fork algebra terms. Then, 

7 = 1 |=AFAU 7' = 1 <=^ HAFAU 1;T";1 + i = i • 

Proof =») If 7 = 1 [=AFAU l' = 1, then, since SAFAU C AFAU, 

7 = 1 h=SAFAU 7 = 1 -

Let 21 € SAFAU and m : RelConstl)RelVar -> A be arbitrary. If 21 \= 7 = 1, 
then by hypothesis 21 |= 7' = 1. Then 

a|=i;r,i + V = i-
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If 21 ¥ 7 = 1, then 7 ^ 0 . Then, since 21 is simple (and thus satisfies 
formula (2.1)), 211= 1;7;1 = 1. Thus, 

21M;7;1 + Y = l-

Then, )=SAFAU 1;7;1 + Y = 1- By Thm. 6.2, we then have 

[=AFAU 1;T";1 + 7' = 1 . 

<=) Let 2t G AFAU and m : RelConst U RelVar -* A be arbitrary. By 
hypothesis 211= 1 ;7; 1 + 7' = 1. Notice that if 211= 7 = 1 then 21 (= 7 = 0, 
and therefore 21 \= 1;T";1 = 0. Thus, (=AFAU 1;7;1 + 7' = 1 implies 
7 = 1 |=AFAU 7' = 1. • 

The proof of the following corollary follows the same steps as the proof 
above. 

Corollary 6.4 Let 7 and 7 ' be fork algebra terms. Then 

7 = iHc7 ' = ui «=> Hcui;7";i + i'u;7/ = ui • 

Let L(T) be an intuitionistic logic, where F = { 71, •. •, 7/t } is a finite 
set of first-order sentences imposing conditions on the accessibility relation. 

Let K-Y be the class of those fork models satisfying the set of equations 
{ Tv ,()(7) = 1 : 7 G r } plus conditions (C1)-(C6), and let FLT be the fork 
logic induced by the class of fork models K.p. 

Lemma 6.8 Let 3 — (W,R',m) be a model for the intuitionistic logic 
L(F). Then a fork model T = (21, m') exists for the fork logic FLr, con­
structed from 3, such that for all w £ W and for all <p G IntFor 

3,w \=L{T) <P ^=^ w 6 dom (m' (Tj (</?))) . 

Proof Define 21 as the FullPFAU with set of urelements W, let m'(R) = 
R', and for each Ri G RelVar define m'(i?j) = { {x, y) : x G m(pi)}. The 
equations in the set { Tv,o(7) = 1 : 7 G T } hold due to the way R' and .Ri 
were defined (cf. Ch. 5). 

The remaining part of the proof proceeds by induction on the structure 
of the formula ip, and is as in Lemma 6.4. • 

Lemma 6.9 Let T = (21, m) G /Cp. Then there exists an intuitionistic 
model 3 = (W, R', m') for the logic L(T) constructed from T such that for 
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all w G W and for all <p G IntFor 

w G dom (TO (Tj(<p))) <=> 3, w \=L(r) f • 

Proof Let us define W = Urel<&, R' = m(R), and for all pi G PropVar 
define m'(pi) = dom (m (Ri)). Notice that the validity of the set of equa­
tions { Tv,()(7) = 1 : j £T} in F implies the validity of the sentences T in 
3. The remaining part of the proof proceeds by induction on the structure 
of the formula <p as in Lemma 6.5. • 

Theorem 6.21 Let ip G IntFor. Then, given x G UreVar and y G 
CompVar, 

\=L(T)1P <=> \=FLr x T ^ y . 

Proof Let us prove the contrapositive. If J^/nt ip, then an intuitionistic 
model 3 = (W,R,m) for L(r) and w G W exist such that 3,w ¥jnt ip. 
Then, by Lemma 6.8 there exists a fork model T = (21, m') G /Cr s u c n 

that w $. dom (m' (Ti (ip)))- Let v be a valuation satisfying u(x) — w, then 
T,V¥FLT xT/(ip)y, and thus>Vz,r xTj(ip)y. 

li^FLr xTj(ip)y, then a fork model T = (21, m) G KT and a valuation 
v exist such that (v(x),v(y)) <£ m(T/(V>)). Thus, v(x) <£ dom (m(T/(V0))-
By Lemma 6.9 there exists an intuitionistic model 3 = (A,R',m') such 
that 3, u(x) ¥L(Y) ip, and thus ¥L(T) ip- C 

Definition 6.51 We define the calculus Int-FLCr by the condition 

\~Int-FLCr *Qt 

«<=*• V-int-FLC t u l ;TV i < > (7i) . . . . . r v ,<)(7fc) ; l + l 'u ;Q t' . 

Theorem 6.22 Given x G UreVar and y G CompVar, 

\=FLr
 XQV <=> \~Int-FLCr XQV • 

Proof 
I"Int-FLCr XQV 

<=> {by Def. 6.51} 
\~int-FLc x ui;7V,o(7i)- ••••^v,o(7fe);i + i'u;<5 3/ 

•*=> {by Thms. 6.15 and 6.16} 

\=FLK x ul;Tv,<)(7i)-----^v,(>(7fe);1 + ru;<5 y 

file:///~int-FLc
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4=> {by Def. FLK } 
VM&K,M\=FL.x u l ; T v , ( ) ( 7 l ) . . . . . T v , ( ) ( 7 f c ) ; l + l ' u ; Q y 

^=» {by Def. FL' } 

\=K ui;rVi0(7i)-...-rVlo(7fc);i + i'u;Q = ui 
<=> {by Cor. 6.4} 

{ T V i 0 ( 7 ) = l : 7 G r } h i c Q = ul 
«=» {byDef . /C r } 

K r Q = u l 
«=• {by Def. F I r } 

Let us assume we are working in an intermediate logic with Kripke 
semantics, whose accessibility relation is constrained by a finite set of sen­
tences r . In order to establish the validity of a formula a, it is enough to 
verify that a holds in every Kripke model in which all the sentences in T 
hold. 

An alternative procedure using the calculus Int-FLCr is the following: 

(1) Translate the set of sentencesr to a set of relation designations. 
(2) Translate formula a to a relation designation. 
(3) Apply the deduction theorem (Cor. 6.4) in order to obtain a single 

relation designation R. 
(4) Use the proof system Int-FLCr in order to prove the formula xRy. 

Joining Thms. 6.21 and 6.22, we obtain the following corollary. 

Corollary 6.5 Let ip G IntFor. Then, given individual variables x G 
Ure Var and y G Comp Var, 

\=L(T) i> «=*> I-Int-FLCr xTl(lf))y . 

Proof By Thm. 6.21, 

K( r )V- <=> \=FLV xTj^y . (6.6) 

By Thm. 6.22, 

\=FLr xTl(ll>)y <^> ^Int-FLCr xTl{i))y . (6-7) 

Finally, by (6.6) and (6.7), 

l=L(r) i> « = ^ ^Int-FLCr xTT(lp)y . 
• 
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6.12.3 Method 3 

Translate constraints from T and the formula a to be proved, into relational 
designations. Verify whether the term obtained from a is derivable from 
the terms obtained from the members of T. In order to test this derivability 
we apply equational means of reasoning within the theory of fork algebras 
as in the first part of the chapter (see also [M. Prias et al. (1997)c]). 
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Chapter 7 

A Calculus for Program Construction 

7.1 Introduction 

The most problematic part of the process of software development is main­
tenance. Usually, even after a system is considered to be finished by the 
team of developers, a long time goes by before the software is fully oper­
ational. This is due in part to the fact that most programmers tend to 
make mistakes when programming. When run for the first time, their pro­
grams usually do not terminate, or return unexpected results. Even when 
a program is accepted by the team of developers as a fine working program, 
usually the performance needs to be improved. Improving the performance 
results in code modification, and a new need for testing the program. Op­
posed to the previous idea is the notion of formal program construction. 
In a formal setting, we can reason about logical or algebraic properties of 
programs that are difficult or impossible to express in an informal setting. 
At the heart of formal program construction is the ability to calculate pro­
grams in much the same way as a mathematician solves a set of equations or 
proves a theorem constructively. As a consequence, a formally constructed 
program is correct by construction with respect to its specifications, and 
its derivation is a proof of its correctness. 

A particular class of formalisms for program construction are those 
based on formal calculi. These formalisms have a logical basis. Specifi­
cations are formulas, and a certain subset of those formulas is considered 
to have an algorithmic meaning and is thus interpreted as programs from 
functional, logic, or imperative programming languages. Derivation rules 
resemble inference rules from logical frameworks. 

139 



140 A Calculus for Program Construction 

Fork algebras arose in computer science when looking for a calculus 
for program construction based on binary relations. Programs are to be 
thought of as the relation they establish between input and output data. 
Functional calculi have been extensively used for program construction [J. 
Backus (1978); R. Bird (1986); R. Bird et al. (1993); R. Burstall et al. 
(1977); J. Jeuring (1994); L. Meertens (1987)], but their specification lan­
guage is not declarative enough. Specifications are partial recursive func­
tions (and thus programs in functional languages), that are optimized along 
the derivation process. Unfortunately, finding the functional specifications 
is not always easy, and a gap wider than is desirable is left between the 
original problem and its specification. Relations present some advantages 
over functions. Relations allow some operations, such as the converse and 
complement, that are not even defined in functional frameworks. These 
operations make relations more expressive than functions, and thus re­
lational frameworks allow for more declarative specifications. Relations 
have been used in program construction for some time. In [R. C. Back­
house et al. (1993); R. C. Backhouse et al. (1991); R. Bird et al. (1997); 
H. Doornbos et al. (1997)], relations are introduced using a categorical 
approach, and used for defining a calculus for program construction. In [R. 
Berghammer et al. (1997)] and the references therein, the relational calcu­
lus is used for the construction of graph algorithms. In [B. Moller (1991); 
B. Moller (1993)], a framework for program construction based on relations 
(not necessarily binary ones) is presented, with applications in the deriva­
tion of graph and pointer algorithms. Other applications of binary relations 
in computer science are reported in the book [C. Brink et al. (1997)]. 

In this chapter a calculus for program construction based on fork al­
gebras and generic algorithms is presented. The equational calculus of 
fork algebras has been used in program construction for some time [G. 
A. Baum et al. (1996); M. Frias et al. (1994); M. Frias et al. (1993); 
M. Frias et al. (1996); M. Frias et al. (1998); M. Frias et al. (1997)a; 
A. Haeberer et al. (1993)b; A. Haeberer et al. (1991)]. Here, the formalism 
adopted is the first-order theory of fork algebras. First-order formulas over 
relations are used in order to describe design strategies (such as case anal­
ysis, trivialization, divide-and-conquer, backtracking, etc.). Generic speci­
fications using parameters describe a class of problems rather than a single 
problem. When the parameters satisfy enough properties, then it is pos­
sible to find a generic algorithm (also containing parameters) which solves 
the whole class of problems. The methodology to be presented here allows 
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us to derive generic algorithms following some design strategies, starting 
from generic specifications. Examples will be presented on how to derive 
generic algorithms from generic specifications, following the presented de­
sign strategies. 

The chapter is organized as follows. In Section 7.2 the notion of filter is 
introduced and the relationship among filters, sets and guarded commands 
is analyzed. In Section 7.3 the relational implication is presented and some 
of its useful properties for derivation of recursive programs are stated. In 
Section 7.4 the usefulness of the expressiveness and representability results 
with respect to the process of program construction is discussed. In Section 
7.5 the methodology for program construction is described. In Section 7.6 
several examples of program derivations are presented. Finally, in Section 
7.8 the approach presented here is compared with previous approaches. 

7.2 Filters and Sets 

Filters are partial identities, i.e., relations F satisfying the condition F < V. 
The reason why they are called filters is because they can be used as strain­
ers, filtering the information that reaches the input of a relation. For exam­
ple, if F is a filter and R is an arbitrary relation, F; R restricts the input of 
R to F. There is a clear relationship between filters from algebras of binary 
relations and sets. A filter F univocally characterizes a set, namely, the set 
{ x : xFx }. Also, given a set S, it univocally characterizes a filter, namely, 
the binary relation {{x,x} : x e S}. We will denote the filter associated to 
a set S by Vs- Given a filter F, by ->F we denote the term F-V. Notice 
that if F = Vs for some set S, then ->F = V-§, the filter associated to the 
complement of the set S. This is justified by properties 1 and 2 in Thm. 7.1. 

Theorem 7.1 The following properties of filters are valid in all relation 
algebras: 

(1) If F is a filter, then F + ->F = V, 
(2) IfF is a filter, then F-^F = 0, 
(3) ^Dom(R);l=R^l, 
(4) If F is functional, then 

F;^Dom(R) ;1 = (Dom(F) -^Dom(F;R)) ;1 . 
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Proof 

1. 

F+->F = F+{T-V) 

= (F-V) + (F-

= (F+F)-V 

= i - r 

= r. 

F-^F = F- (F-V) 

= (F-F) -V 

= 0. 

3. Let us show that 

-.Dom (R) ; 1 • R; 1 = 0, and 

1') 

-i-Dom (R): 

(by Def. -,F) 

(by F filter) 

(by BA) 

(by BA) 

(by BA) 

(by Def. -.F) 

(by BA) 

(by BA) 

;1 + iJ;l = l . 

•^Dom(R) ;1 • R;l 

= -nDom(R) ;1 • Dom(R) ;R;1 (by Thm. 2.3.11) 

= Dom (R) ; (-^Dom (R) ; 1 • R; 1) (by Thm. 2.3.22) 

= (Dom(R) ;^Dom(R) ;l)-(Dom(R) ;R;1) (by Thm. 2.3.17) 

= (Dom(R) -iDom{R)) ;1 • Dom(R) ;R;1 (by Thm. 2.3.7) 

= 0;1 • Dom (R) ;R;1 (by Thm. 7.1.2) 

= 0 • Dom(R);R;l (by Thm. 2.3.1) 

= 0. (by BA) 

iDom(R);l + R;l (7.1) 

= ^Dom{R);l + Dom(R) ; 1 (by Thm. 2.3.14) 

= (^Dom (R) +Dom (R)) ; 1 (by Ax. 2) 

= 1';1 (by Thm. 7.1.1) 

= 1. (by Ax. 5) 
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4. 

F;^Dom{R);l=F;R~]l (by 3) 

= Dom (F) ;F;R;1 (by Thm. 2.3.19) 

= Dom(F);-<Dom(F;R);l (by 3) 

= (Dom(F) -,Dom(F;R)) ; 1 . (by Thm. 2.3.7) 

• 
Filters are used in program construction to model guards in if-then-

else-like constructs, or guards from case-like constructs. Let us consider 
the following example. 

Function IsZero(n : Nat) : Boolean 
Begin 

If n = 0 Then 
<— true 

Else 
<— false 

End If 
End. 

This function can be represented relationally by the following equation: 

IsZerO = l 'ojCtrue + I V o i Q a l s e 

where: 

(1) r 0 is the filter {(0,0)}, 
(2) 1' ;_o is the filter { (x, x) : x > 0 }, 
(3) Qrue is the constant relation { (x, true) : x e U}, 
(4) Cfaise is the constant relation { (x, false) : i g l / } . 

7.3 The Relational Implication 

In this section two operations on binary relations called right residual and 
relational implication respectively are defined. As we will see in Section 7.6, 
the relational implication is closely related to the specification of problems 
in fork algebras. We define the right residual of relations R and S (denoted 
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Fig. 7.1 The relational implication. 

by R\S) in terms of the relational operators previously defined, by 

R\S = R;S . (7.2) 

The set theoretical definition of the right residual is given by the fol­
lowing formula 

R\S = {(x, y) : Vz (zRx =» zSy)} . 

The abstract definition of the relational implication of relations R and 
S, is given by the equality 

R^S = R-J, (7.3) 

while its set theoretical definition (see Fig. 7.1 for a graphical interpretation) 
is given by 

R-^S = {{x,y) :Vz(xRz^ySz)} . 

Figure 7.1 shows that a pair (x,y) is related via R —> S whenever the 
range of x through R (the smallest circle) is contained in the range of y 
through S (the medium-sized circle). From (7.2) and (7.3) it is immediate 
that the relational implication is definable in terms of the right residual. 
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More explicitly, the following is true in every relation algebra: 

R-*S = R\S. 

Since the relation algebraic characterization of the relational implication 
is non algorithmic (complement does not have nice properties when applied 
over a composition), some properties are presented next that will be very 
useful in the derivation of algorithms from relational specifications. 

Besides some simple properties, such as 

(P+Q) -*R={P^R)-{Q^R) (7.4) 

and 

P->(Q-.R) = ( i > - > Q ) . ( P - f l ) 1 (7.5) 

(which follow directly from the definition), some more elaborated properties 
that lead to recursive relational expressions for computing the relational 
implication are presented. 

Lemma 7.1 For any relations P and Q, 

^Dom (P) ;(P-^Q)= -iDom (P) ; 1 . 

Proof The inequality < is trivial, due to the fact that P —» Q < 1. For 
the inequality > we have 

Dom(P);(P^Q) 

= ^Dom (P) 

= -^Dorn (P) 

> ^Dom (P) 

= -iDom (P) 

= ^Dom (P) 

P\Q 

Dom(P);P;$ 

Dom(P) ;1 

-^Dom(P) ;1 

1. 

(7.6) 

(by (7.3)) 

(by Thm. 2.3.11) 

(by monotonicity and BA) 

(by Thm. 7.1.3) 

(by Thm. 2.3.7) 

• 
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Lemma 7.2 For any relations P, Q and R, 

Dom(P+Q);((P+Q)-+R) 

= (Dom(P) •Dom(Q));((P->R)-(Q -» P)) 

+ (Dom (P) • -^Dom (Q)) ;(P-* R) 

+ (-iDom(P) -Dom(Q));(Q -» P) . 

Proof By Thm. 2.3.12, 

Dom(P+Q);((P+Q)^R) 

= Dom(P);((P+Q)^R) 

+ Dom (Q) ; ((P+Q) - P) . (7.7) 

Let us now concentrate on the term 

Dom(P);((P+Q)^R) . 

P > o m ( P ) ; ( ( P + Q ) - + P ) 
= {by (7.4)} 

Dom(P)-((P^R)-(Q^R)) 
= {by Thm. 7.1.1} 

Dom (P) ; ((P -> P) • {(Dom (Q) +^Dom (Q)) ; (Q -* P))) 
= {by Ax. 2 and BA} 

Dom (P) ; ((P -» P) • (Dom (Q) ; (Q -> P))) 
+ Dom (P) ; ((P -> R)• (^Dom (Q) ; (Q -» P))) 

= {by Thm. 2.3.22 and Lemma 7.1} 
Dom (P) -Dom (Q) ; ((P -* R)-(Q-* P)) 

+ Dom (P) ;-.Dom (Q) ;(P - • P) 
= {by Thm. 2.3.7} 

(Dom(P) -Dom(Q))- ((P - P)-(Q -> P)) 
+ (P>om(P) - - ,Dom(Q) ) ; (P^P) . 

Thus, 

Dom(P) ; ( (P ->J2 ) - (Q-> .R) ) 

= (P>om(P) •JDom(Q)); ((P -* £)-(Q - • P)) 

+ (Dom(P) -iDom(Q));(P -* R) . (7.8) 
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Reasoning along the same lines allows us to prove that 

Dom(Q);((P + Q)->R) 

= {Dom(P) .Dom(Q)); ((P -> R)-(Q - • R)) 

+ (^Dom(P) • Dom(Q));(Q-* R) . (7.9) 

The lemma finally follows from (7.7), (7.8) and (7.9). • 

Lemma 7.3 If A is a functional relation, then 

Dom(A);(A->P) = A;P . 

Proof 

Dom (A) ;(A-*P)= Dom (A) ;A;P (by (7.3)) 

= A;P (by Thm. 2.3.19) 

= A;P. (byBA) 

• 
Lemma 7.4 If B is afunctional relation, then 

Dom(B);(B;P -> Q) = B;(P^Q) . 

Proof 

Dom(B);(B;P -» Q) = Dom(B) ;B;P;Q (by (7.3)) 

= B;P;Q (by Thm. 2.3.19) 

= £ ; ( P - » Q ) . (by (7.3)) 

• 
Lemma 7.5 Let A and B be functional relations. Let 

P = A + B;P and T = P - » ' Q . 

Moreover, let us assume that 

Dom (P) = Dom (A) +Dom (B) and Dom (A) -Dom (B) = 0 . 
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Then, 

Dom(P);T = A;Q + B;T . 

Proof The lemma follows from Lemmas. 7.2, 7.3 and 7.4. • 

In a similar way to Lemma 7.5, we obtain a proof for Lemma 7.6 below. 

Lemma 7.6 Let A, B and C be functional relations. Let 

P = A + B;P + C;P and T=P^Q. 

Moreover, let us suppose that Dom(A), Dom(B) and Dom(C) are 
pairwise disjoint. Then, 

Dom (P) ;T = A;Q + B;T + C;T . 

From Lemmas 7.5 and 7.6 we see that the recursiveness of the relation 
P allows us to obtain a recursive specification for the relation T. 

Lemma 7.7 For every relation R, 

P;(P^R)<R. 

Proof 

P ; ( P - > P ) < P ^ ( P ; ( P - » P ) ) - £ = 0 (BA) 

( P ; £ ) • (P -» R) = 0 (by Ax. 7) 

^ P;R. P ; P = 0 (by (7.3)) 

«=> 0 = 0. (BA) 

• 
Lemma 7.8 Let R be an antisymmetric relation (i.e., RR < V), then, 
the relation P- (P —> R) is functional for all relation P. 

Proof In order to show that P- (P —> R) is functional, we will prove that 

(P- (P -> R)Y; (P- (P - R)) < V . 
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(P.(P^R)Y;(P.(P^R)) 

= (P-(P -> fl)") ; (P- (P -» fl)) (by Thm. 2.3.5) 

< ( P ; (P- (P - fl))) • ((P - P)"; (P- (P - P))) (by Thm. 2.3.16) 

< (P; (P -> P ) ) • ((P -> RY;P) (by monotonicity) 

= ( p ; ( P - > f l ) ) - ( p ; ( P - i i ) ) " (by Ax. 6) 

<R-k (by Lemma 7.7) 

= fl-fl (by BA and Ax. 4) 

< ! ' • (by Hyp.) 

• 

7.4 Representability and Expressiveness in Program Con­
struction 

As a consequence of Thm. 4.3, the first-order theories of AFA and PFA are 
the same, and thus a natural semantics can be attributed to first-order for­
mulas over abstract relations in terms of binary relations. This is a very 
important property in a calculus for program construction. The equiva­
lence between the first-order theories of PFA and AFA guarantees that any 
first-order property valid for proper fork algebras can be proved syntacti­
cally from the axioms describing abstract fork algebras. This has a direct 
application in program construction. Let us consider an intermediate step 
in a derivation of an algorithm from a relational specification So. The 
derivation has a shape 

S0,Si,... ,Sk, 

where for all i, 1 < i < k, Si is obtained from S0,..., 5j_i by means of the 
derivation rules. If Sk is still not the algorithm we are looking for, then 
further steps must be performed. If resorting to thinking about binary re­
lations shows that a valid first-order property allows Sk to evolve to a new 
expression E (which is closer to the intended algorithm), then the repre­
sentation theorem guarantees that a syntactic proof Sk, Sfc+i,... ,E exists, 
allowing us to reach the formula E from Sk- This shows that the heuristics 
arising from considering concrete binary relations can be employed through-
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out the process of program derivation using the rules and axioms of the cal­
culus for abstract fork algebras. Another important property stems from 
the fact that only a finite number of axioms are necessary for describing the 
class of abstract fork algebras. Thus, the syntactic proofs mentioned above 
can be more easily performed with the assistance of a computer system. 

Regarding the expressiveness of fork algebras, it was proved in Ch. 4.2 
that first-order theories can be interpreted as equational theories in fork 
algebras. Theorem 5.6 shows that a wide class of problems (at least those 
that can be described in first-order logic) can be specified in the equational 
calculus of fork algebras. Moreover, the abstract relational specification 
can be obtained algorithmically from the first-order specification by using 
the mapping TV,a-

7.5 A Methodology for Program Construction 

In this section the outlines of a methodology for program construction based 
on fork algebras using generic algorithms (program schemes) are presented. 
As will be shown in the next section, there is a useful relationship between 
the structure or form of a generic relational specification and a generic 
algorithm (a set of parameterized 'algorithmic' equations) to compute this 
specification. 

The starting point of the methodology is a formal specification of the 
problem to be solved. In this case, first-order logic with equality will be 
used as the specification language, because it is a simple formal language 
that is taught in most computer science courses. Along the description 
of the methodology, an example will be outlined that will be thoroughly 
discussed in Section 7.6. For the examples, the notion of generator will 
be required. Intuitively, generators retrieve the components (members) of 
elements from structured types. Examples of generators that will be used in 
Section 7.6 include retrieving the elements of a list, retrieving the elements 
of a tree, retrieving all the sublists of a list, etc. 

Description of the example problem: 

Let S(/3) be a structured type, and let G C S(/?) x (3 be 
a generator. Select those generated elements that satisfy 

(1) a condition c\, and 
(2) a condition c<i with respect to all the generated ele-
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ments that satisfy the condition c\. 

In the previous description S could be a type functor [R. Bird et al. 
(1997)]. The sample problem P can be specified by the first-order formula: 

P(x,y) <=> 

G(x,y)ACl(y) A Wz(G{x,z) A Cl(z) =* c2(z,y)) . (7.10) 

Notice how close formula (7.10) is to the natural language description 
of problem P, thus giving a totally declarative specification. 

Once a first-order specification of a problem is given, a relational spec­
ification must be obtained. In order to obtain this specification, we can 
proceed in one of the following two ways. Applying Thm. 5.6, from a first-
order specification (p and using the mapping Ty ,a we will obtain a relational 
term Tv,<r(¥>) that captures the meaning of problem P. Unfortunately, the 
term resulting from applying the mapping Tv,<r is not always very adequate 
with respect to the process of program derivation. The second method (the 
one to be used here), consists of reducing the first-order formula <p into an 
equation ev using the set-theoretical definition of the relational operators. 
Notice that, given a formula, there are many ways in which this reduction 
can be done. For the example it is possible to proceed as follows. 

Define P', C\, C2 and G' as new binary relations. Intuitively, the binary 
relation P' will stand for the predicate P in the sense that 

xP'y 4=4> P(x,y), 

C\ will stand for the unary predicate c\ in the sense that 

xC\x <*=> c\(x), 

C2 will stand for c2 in the sense that 

xC2y <=> c2(x,y), 

and G' stands for G in the sense described by the formula 

xG'y <^=> G{x,y) . 

Notice that C\ is a filter, and this will in general be the method used 
for representing unary predicates. 

From the previous definitions, it is easy to check that 

P' = G';Ci • (G'-d -» C2) . 
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Once a generic relational specification is obtained (generic in the sense 
that no assumption is made about the relations C\ or C2), we will choose 
a design strategy that will guide the process of deriving an algorithm from 
this specification. In programming in general, examples of design strategies 
include case analysis, trivialization, divide-and-conquer, backtracking, and 
many more [A. V. Aho et al. (1983); R. Bird et al. (1997); H. Partsch 
(1990); D. Smith (1985); D. Smith (1987)]. In the methodology presented 
here, the first-order language of fork algebras will be used to express such 
design strategies (recall that from Thm. 4.3 and the discussion following 
it, formulas from the first-order theory of fork algebras have a standard 
semantics in terms of concrete binary relations). A trivial example of a 
design strategy is case analysis (C-A). A problem is said to be solved using 
this strategy if the domain of the problem can be partitioned, let us say, in 
k parts Di,... ,Dk, and we find k algorithms A\,...,Ak such that A{ solves 
the given problem when its domain is restricted to the part Di. This can 
be more simply and formally stated by the following formula over relations: 

C.A(R,Ru...,Rk) «=> 
k 

f\ Dom(Ri) -Dom(Rj) = 0 A R = ^ ^ • C7-11) 
i<i<j<k i = i 

Formula (7.11) is to be read as follows: 

'Problem R is solved by case-analysis using problems 
Ri,... ,Rk\ 

Notice that (7.11) provides the means to solve problem R, that is, given an 
input a for R there is to find Ri such that a € Dom (Ri) and then compute 
Ri(a). 

The strategy of trivialization (Triv) is a particular instance of case anal­
ysis where one of the subproblems is assumed to be easy to solve. Easy 
subproblems are, for example, those whose solution does not depend on the 
original problem (non-recursive parts), or for which a solution is at hand. 
We then have 

Triv(R,R0,R1,...,Rk) <=> 

C-A(R,Ro,Ri,...,Rk) A Easy(Ro). (7.12) 



A Methodology for Program Construction 153 

The relations Ro, R\,..., Rk are usually determined by properties of the 
problem domain. In general, domains allow for 'natural' partitions (empty 
and nonempty lists, trees of height 1 or greater, etc.). In [H. Partsch 
(1990), pp. 201-202], these partitions are obtained by introducing tautolo­
gies. Hence, the following heuristic can be used in order to determine 
relations RQ, RI, ..., Rk. 

Heuristic 7.1 Let D be a domain (type) characterized by the partial 
identity V D- Assume there are identities 1'0, l ' i , . . . , l'fc such that I'D — 
l'o + l ' i + • • • +1 '*- I n order to find the problem (relation) Ri, 1 < i < k, 
define Ri = l'i;R, provided Easy(l'o;R) holds. 

Formula (7.12) is to be read as follows: 

'Problem R is solved by trivialization using relations 
Ro, Rx,..., Rk with easy Ro'. 

Formula (7.12) provides a means to solve problem R, namely, using case-
analysis in the case of inputs outside the domain of RQ, and the simple prob­
lem Ro otherwise. The difference between trivialization and case-analysis 
is that in the latter we may need to derive solutions for all subproblems, 
while in the former, problem Ro presents a definite improvement in the 
derivation process. 

The strategy of recomposition (Recomp) is defined by the formula 

Recomp(R,Split,Qx,-.. ,Qk, Join) <*=> 

R = Split;(Qx®---®Qk);Join, (7.13) 

where the relations Split and Join stand for programs so that the first 
one effectively decomposes the data, and the latter combines the results of 
Qif->Qk in order to provide a solution for R. 

By joining the strategies of recomposition (cf. (7.13)) and trivialization, 
we obtain the following formalization of divide-and-conquer: 

D&C(R,R0,Split,Qx,...,Qk,Join) <̂ => 

3Q(Triv(R,Ro,Q) A Recomp(Q, Split, Qx,.. .,Qk, Join)), 

where the variable R may appear inside some of the terms Qx,- • •, Qk, but 
does not affect the term Ro. 

Generally, relations Qx,- • • ,Qk will be either 1' or the relation R itself. 
This is supported for example by Smith [D. Smith (1985)] in his schema of 
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divide-and-conquer algorithms. How to find the parameters for the D&.C 
strategy is then explained by the following heuristic. 

Heuristic 7.2 Among the relations Qi,...,Qk, those that will take the 
value R are obtained by folding of the definition of R. After no more 
foldings are possible, the remaining relations are to be set to 1'. If we are 
heading correctly towards a divide-and-conquer algorithm, at this point we 
should be dealing with a term that looks approximately like 

I S\;R\J\ ^ 
® 

® 

® 
Ti+i 

So; 

\ Tk 

;Jo, 

I 
where R does not occur in any of Ti+\,... ,Tk. The last step is rewriting 
Tm (i < m < k) as Sm;Jm, with Sm the 'Split' part and Jm the 'Join' part. 
Finally, let Split := So; (Si® • • • ®Sfc) and Join := (J i® • • • ® Jfe) ; Jo-

There are many interesting problems in computer science for which 
efficient solutions are achieved using divide-and-conquer — for example, 
searching, sorting, matrix multiplication, Fourier's transform, etc. There 
are also many problems whose solution is closely related to the strategy of 
divide-and-conquer but that cannot be put into the schema. Let us consider 
the following problem Subtree as an example: 

Given a tree t and a node n, Subtree retrieves the sub­
tree of t whose root is the node n. 

If we blindly apply the schema of divide-and-conquer, making two re­
cursive calls for treating the left and right subtrees, one of these calls will 
always be undefined — namely, that call that treats the subtree that does 
not contain the node n. Thus, before making the recursive call it must be 
decided what the parts of the original datum for which recursively calling 
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Subtree will yield an output are. In this particular example, it suffices 
to check which subtree of t contains the node n. These kind of problems 
suggest the definition of a generalized version of the strategy of divide-and-
conquer. The strategy is defined as follows: 

GenDhC (R,Ro,Di,Spliti,Ai,Joini,..., Dk, Splits, Ak, J oirik) <=> 

/ \ Di<V A Triv(R,Ro,Di;R,...,Dk;R) A 
i<t<fe 

/ \ 3Qi1,...1QiJi(Ai = Qi1®---®QijiA 
l<i<k 

Recomp(Di;R,Spliti,Qi1,... .Qi.^Joirii)) . (7.14) 

Notice that when k equals 1, GenD&zC becomes D8zC. Once the iden­
tities Di (1 < i < k) are identified, heuristic 7.2 can be applied to find 
the remaining parameters. In order to find the identities Di, we use the 
following heuristic. 

Heuristic 7.3 Assume the specification contains some subexpression with 
shape (G;Ri —> R2) for relations G, R\ and R2. Notice that this is a rea­
sonable assumption because relational implications naturally appear from 
first-order specifications containing universal quantifiers. Assume also that 
G = fi;Gi +•••+ fk',Gk, where fi is a functional relation for all i, 
1 < i < k (G could be for instance a generator). Let us see the case 
for k = 2. Then, we reason as follows: 

G;R\ —> R2 

= {byDef. G} 
(fi',Gi + f2',G2) ;Ri —> R2 

= {by Ax. 2 and (7.4)} 
{fx\Gi\R± —• R2) • (f2',G2;Ri —> R2) 

= {by Lemmas 7.1 and 7.4} 
( / i ; (Gi ; i*i -* R2) + - 1 D o m ( / i ) ; l ) 

•{h;{G2;Ri -» R2) +^Dom{f2);l). 

Distributing + over •, we obtain the terms: 

(1) / i ; (C?i; i i i -» R2) • h\(G2\Rx -> R2), 
(2) / i ; ( G i ; i ? i -> R2) • -£>om(/2) ;1 , 
(3) -.Dom ( / i ) ; l • f2;(G2;Ri - #2), and 
(4) - . f l o m ^ ) ; ! • - .Dom( / 2 ) ; l . 
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The domains of these relations are contained, respectively, in the niters 

Dom(/i) -Dom (f2), Dom (fi) -^Dom(/2), 
-iDom (/i) -Dom ( / 2 ) , -'Dom (/i) --iDom ( / 2 ) . 

Among these domains (which, notice, are all disjoint), the nonempty ones 
become the identities D{. 

Each strategy comes with an associated explanation about how to con­
struct a program solving the original problem. It is easy to see how 
the previously given strategies induce the structure of the programs. For 
example, it is clear from the definition of case analysis that whenever 
C.A{R, RQ,R\) holds, we can infer that R = Ro + R\, thus giving a pro­
gram (equation) of the desired shape solving the problem R. In the same 
way, when D&C(R, RQ, Split,Qi,..., Q^, Join) holds, we have a program 
with shape 

R = Ro + Split;(Qi <g> • • • <g> Qk);Join 

solving R. Also, when (7.14) holds, we have a program with shape 

k 

R = R0+ ^r/Di;Spliti;(Qil®---<g>Qiji);Joini. (7.15) 

The niters Di in (7.15) play the role of guards in case-like constructs. 
Notice that strategies are in general formulas of the form 

Strat(R,Xi,...,Xn) «=4> Strat-Defi.nition{R,Xu... ,Xn), (7.16) 

where Strat is a (n + l)-ary predicate symbol (name and parameters of 
the strategy), and Strat-Definition is a formula on the relational variables 
R, Xi,... ,Xn, involving previously defined strategies. Deriving a generic 
algorithm GA for solving a generic problem GP whose generic relational 
specification is GS(P\,..., Pfe) using a strategy denned as in (7.16), consists 
of finding relational terms T\(Pi,..., Pk),..., Tn(Pi,..., Pj.) such that 

Theory{Dx),.. .,Theory(Dm),GS(Pi,. ..,Pk) h u * 

StratJ)efinition(GP, T i ( P j , . . . , P f c) , . . . ,Tn{Pu ..., Pk)). (7.17) 

In (7.17), Theory(Di),... ,Theory(Dm) are relational specifications of 
the domains of the problem [R. Berghammer (1991); R. Berghammer et 
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al. (1993)c; R. Berghammer et al. (1993)b], and the symbol I~AFA denotes 
first-order logic entailment under the theory of AFA. 

Notice that the algorithms characterized by the strategies are as a 
matter of fact fork algebraic equations. Thus, in order to find terms 
T\{P\,... ,Pk),. • •, Tn(Pi,..., Pfc) we will resort to equational reasonings 
using the axioms of fork algebras, plus those equations describing the do­
mains Di,..., Dm. The general strategy we will use for deriving recursive 
algorithms will be Unfolding/Folding [J. Darlington (1975)]. 

The terms T1(P1,... ,Pk),... ,T„(P i , . . . ,Pk) required in (7.17), and 
found as described in the previous paragraph, are either algorithms if they 
are built with algorithmic combinators, or can be considered as relational 
specifications of simpler problems. 

In Section 7.6 we will show that for the sample problem, if we define 

DRti := Dom(Ri)-Dom(F1;P
/), 

DR^I := Dom(Ri) -^Dom(Fi;P'), and 
D^RA := ->Dam(R1)-DomlFi;P'), 

we can deduce 

[P, = C;C1 - ( G ' A - C2) 

A G' = Vh\Ro + V^b;Ri + V^-F^G' 

A C2-C2<V A Easy(Vb;P')} 

=> GenD&;C(P',Vb;P',DRyi,R1VF1,V®P',Join1, 

DR^UR,V,C1.C2,D-,R,1,F1,P',V), (7.18) 

where Ri and Fi are functional relations, Vb and l'_,j, are filters that pro­
duce a partition of the domain l's(/3)> an<i 

Joim := ((Ci-C2 ® C2) + (C i ; C 2 is 1')) ;2 . 

According to the strategy GenD&C, we obtain the algorithm 

Rx V 
P' = Vb;P' + DR<1; V ; ® ;Joini 

Fi P' 

+ DR^R-id-Ci) + D-,RA;F1;P'. 
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In our formalism a strategy associates to each generic specification 
GS(Pi,..., Pk) a generic algorithm GA(Ti,...,Tn). If we instantiate the 
parameters Pi,...,Pk occurring in specification GS with relation desig­
nations Ri,... ,Rk, and derive algorithms Ai,...,An (using this same 
methodology) for terms T\(Ri,... ,Rk), • • -, Tn(Ri,... ,Rk), we obtain a 
particular algorithm, namely A := GA{A\,..., An) now for the less generic 
problem S := GS(Ri,..., Rk). Let us see how this is reflected in the prob­
lem chosen as an example. If in the sample problem we take* 

(1) /3 := Nat and S(/J) := List(Nat), 
(2) G' = VLi;Hd + VL>i\Hd + VL^i;Tl;G' (i.e., RQ = Hd, # i = 

Hi and Fx = Tl), 
(3) Ci := 1', and 
(4) C2 := z<, the standard ordering between natural numbers, 

then P' specifies the problem of finding the minimum element in a list. 
Notice that 3oin\, under this instantiation, specifies the problem of finding 
the minimum between two natural numbers. Since it is not in an algorithmic 
form, this same methodology can be applied to derive an algorithm for this 
problem. Once this is done, (7.18) can be optimized to obtain a divide-
and-conquer algorithm for finding the minimum element of a list. 

In Fig. 7.2 we give a graphical description of the methodology we pro­
pose. 

7.6 Examples 

In this section we will present several generic problems for which we will 
proceed as follows. 

(1) We will specify the problems in first-order logic, in a totally declar­
ative manner. 

(2) We will specify the problems with fork-algebraic equations obtained 
from the first-order specifications. 

*We will denote by Hd and Tl the functions that , given a list [e : I], retrieve the element 
e and the list I, respectively. By Cons we denote the function that , given an element e 
and a list I, produces as output the list [e : I]. By VLk we denote the filter over lists 
of length k, and by l ' ^ x t the filter over lists of length greater than k. By ^ we will 
denote the standard ordering between natural and integer numbers. 
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GS(PU ...,Pk)
 Strat . GAiT^P,, ...,Pk),..., Tn(Pi,..., Pk)) 

Pi :— Ri 

\<i<k 

derive Ai 

to compute 

Ti(R\,... ,Rk) 

•A:=GA{Ax,...,An) 
computes 

Fig. 7.2 Methodology for program construction. 

(3) We will derive generic algorithms for these generic problems using 
the presented design strategies. 

(4) We will solve some specific problems by using the generic algo­
rithms. 

The derivations we will present may seem too long and detailed, but 
they are essential in order to show that smooth syntactical derivations 
of algorithms are possible by using the methodology we propose. Also, 
these derivations are themselves constructive proofs of correctness of generic 
programs with respect to generic specifications. In this sense, the amount of 
effort invested in making (or understanding) complex derivations is largely 
compensated for by their usefulness in designing concrete programs. 

7.6.1 First Example 

The first example will be the problem used in the previous section as an 
example. The problem was informally specified by the sentence: 

Let S(/3) be a structured type, and let G C S(/3) x /? be 
a generator. Select those generated elements that satisfy 

(1) a condition c\, and 
(2) a condition c^ with respect to all the generated ele­

ments that satisfy the condition C\. 

Problem P can be specified by the first-order formula: 

P(x,y) 

G(x,y)ACl(y) A \/z(G(x,z) ACl(z) =» c2(z,y)) . (7.19) 
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Recalling the set-theoretical definition of the relational operators, we 
can transform (7.19) into the following abstract relational specification: 

P = G;C1 • (G;d - C a ) , 

where our only assumption about C\ and C2 is that C\ is a filter. 
It is at this point when the form of the generator becomes important. 

Let us assume that l's(/3) = l'& + l'-.t, where l'j, represents the 'base' part 
of the type S(/?). Suitable forms for generators are, for instance: 

Gl = Vb;Ro + V^,;Ri + r ^ ; F i ; G i , (7.20) 

G2 = Vb;Ro + l ' ^ ; i ? i + l ' . 6 ; F i ; G 2 + V^b;F2;G2. (7.21) 

In (7.20) and (7.21) we assume that RQ and i?i are fixed relations with 
Ri functional, and that Fi C S (/?) x S (/?) and F2 C S (J3) x S (/?) are 
functions that decompose data. Since G2 is more general than G\ (take F2 

to be Fi in (7.21)), we will work with G2, and therefore the specification 
becomes 

P = G2;C1 • ( G 2 ; d -> C2) . (7.22) 

In order to simplify the presentation of the derivation, we will make the 
following assumptions: 

Assi : Dom {F{) = Dom (F2), 

Ass2 : Dom (Ri) < Dom (F x ) . 

Notice that in the derivation below, these assumptions can be easily dropped 
and the changes will be minor, resulting only in longer formulas but no 
technical complications. 

We will derive a generalized divide-and-conquer solution for the prob­
lem. Thus, we must find relations RQ, D\, Spliti, Ai, Joini,..., Dk, Splitk, 
Ak and Joirik such that the formula 

/ \ Di<V A Triv(R,Ra,Dl;R,...,Dk\R) A 
l<i<k 

/ \ 3Qil,...tQiii(Ai = Qi1®---®Qiji A 
l<i<fc 

Recomp(Di;R, Spliti, Qh,..., Qiu, Joini)) 

holds. 
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Since l's(/3) = l'b + l'-.6> w e wiU begin with a Trivialization step using 
Heuristic 7.1. If Easy(Vb',P) holds, we must concentrate on the relation 
l'_,(,;P. Thus, we will now derive an expression for the relation 1'-,&;P of 
the form required in (7.14). 

= { by (7.22)} 

i ' ^ ; ( G 2 ; C i • (G2;d -» G2)) 

= { Unfolding the definition of the generator G2 } 

(R\ + F\\G2 + F2\G2) \C\ 

• ((R1 +Fi;G2 + F2;G2);C1 - G2) 

= { Applying Ax. 2 several times } 

(i?i;Ci + F i ;G 2 ;Ci + F2;G2\Ci) 

• ((Ri;d + F u G a j d + Fa jGa jd ) -> G2) 

= {by(7.4)} 

(7ii;Ci + ^ i ; G 2 ; C i + F 2 ;G 2 ;Ci) 

•(/ZIJGX - C 2 ) - (F 1 ;G 2 ;C 1 -» G2) • (F2;G2;C1 -» G2) 

= { Distributing + over • } 

(Rud) • ( i inGi -» G2) • (F^G^d -> G2) • ( J ^ G ^ -> G2) 

+ (Fi;G2 ;G!) • ( i ? i ; d - G2) • ( F u G a j d -> G2) • (F2 ;G2 ;G1 -» G2) 

+ (F2 ;G2 ;Gi) • {Ri;d - C2) • (F i ; G 2 ;G! -> G2) • ( i ^ G a A -> G 2 ) . 

In order to shorten notation we will denote the term G2;C\ —• G2 by 
X. Let us consider the term 

(Ri;d) • (Ri;d - G2) • ( F u G a j d -> G2) • (F2 ;G2 ;Gi -> G2) . (7.23) 

(fli;Ci) • (Ri;d - G2) • ( F i j G a j d - C2) • (F2;G2;d - G2) 
= {by Lemmas 7.3 and 7.4 using Assi and Ass2 } 

( i i i ;Ci) -(i l i jCijda)- ( F i ; * ) • (Fa;*) 
= {by Thm. 2.3.17} 

( f l ^Gx •Cl]C2)).{Fl]X)-{F2;X) 
= {by Thm. 2.3.22} 

( f i i ; (Gi-C2)) - (F i ; X)-(F2;X) 
< {because by (7.22) G2;Gi > P, and monotonicity} 
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( i? 1 ; (C 1 .C 2 ) ) - (F 1 ; (P - G2)) • (P2; (P -> G2)) 
= {if G2 is antisymmetric, and Lemmas 7.1, 7.3, 7.8} 

( i?i ;(C1-C2))-(Fi;(P;C2 + -,Dom(P) ;1)) 
•(F2;(P;C2 + -iDom(P);l)) 

= {by Ax. 2 and BA} 
( f l i ; (G i .C a ) ) - (F i ;P ;C 2 HJ 2 ; i ' ;G 2 ) 
+ (J2i ; (G 1 .C 2 ) ) . (P 1 ;P;C 2 ) . (F 2 ;^Dom(P) ;1) 
+ {Rl;{C1-C2)).{Fl^Dom{P) ;1) .(P2 ;P;G2) 
+ (Ri;(C1.C2)).(F1;^Dom(P) ;l).(F2;^Dom(P) ;1). 

Let us consider now the term 

(Fi;G2;Ci) • (i?i;Ci —> C2) 

• ( P i ; G 2 ; d - G2) • (P2 ;G2 ;Ci -» C2) . (7.24) 

( F i j G a j d ) • (Pi ;Gj -> C2) • (Pi;G2 ;G1 -> G2) • (F2;G2;Ci -» G2) 

= { by Lemmas 7.3 and 7.4 using Assi and ylss2 } 

(Fi jGajCO^iJi jCijda + - i D o m ^ d ) ; l ) . (F i ;X) -(P2 ;X) 

= {by BA and Thm. 2.3.17} 

(Pi ; ( (G 2 ;G 1 ) .X)) . (P 1 ;G 1 ;G 2 + ^Dom^-C^ ;1)-(P2;X) 

= { folding P } 

(F i ;P) - ( f l i ;Ci ;d 2 + - J D 0 m(P 1 ;G 1 ) ; l ) - (P 2 ;X) 

< {because by (7.22) G2;Gi > P , and monotonicity } 

(F1;P)-(R1;C1;C2 + -.£>om(/ii;Ci) ;1)-(P2 ;(P -> C2)) 

= {if G2 is antisymmetric, and Lemmas 7.1, 7.3, 7.8} 

( i ^ P H f l i i C i j C a + -P>om(P 1 ;G 1 ) ; l ) . (P 2 ; (P ;G 2 + -iDom (P) ; 1)) 

= {byBA } 

( P I ; G I ; G 2 ) - ( P I ; P ) - ( P 2 ; P ; C 2 ) 

+ (Pi ;G 1 ;G 2 ) - (P 1 ;P) . (P 2 ; -P> 0 m(P) ;1) 

+ ( - . D o m ^ u d ) ; l ) - (P i ; P) - (P 2 ;P ;G 2 ) 

+ (-,Dom(iZ i ;Gi) ; l ) - (P i ;P) - (P 2 ; -P 'om(P) ;1). 



Examples 163 

Finally, if we consider the term 

( i ? 2;G 2 ;C 1 ) - ( i? 1 ;C 1 ->C 2 ) 

• (Fx; G2; Cx -> C2) • (P2; G2; d -> C 2 ) , (7.25) 

a derivation along the lines of the previous one proves that: 

(F2;G2;C1) • ( i2 i ;Ci -» C2) • (Pi;<Z2;Ci - C2) • (P2 ;G2 ;Ci - C2) 

< ( i2i ;Ci;d2) .(Fi;P;<52)-(F2 ;P) 
+ ( i2 1 ;C 1 ;d a ) . (F 1 ; - .£>om(P); l ) - (F a ;P) 
+ (-nDomiRiid) ;1)-(F1;P-A)-(F2;P) 
+ (-.DomiR^d) ; l ) - ( P i ; - D 0 m ( P ) ;1)-(F2 ;P). 

Joining the derivations performed from terms (7.23), (7.24) and (7.25), 
we obtain: 

l ' ^ ; P < (Rx;(C1-C2)).(F1;P-A).(F2;P;C2) 
+ (i21;(C71-C2)).(Pi;P;tf2).(P2;-.Z?om(P) ;1) 
+ (i21 ;(C1-C2)).(Pi;-.I>0m(P) ;1)-(P2;P;<?2) 
+ (i2 i ;(Ci-C2)).(Pi;- .I>om(P) ; l ) - (F 2 ; -Dom(P) ;1) 
+ (i i i ;Ci;d?2)-(Fi;P)-(P a ;P;(52) 
+ (Ri;Ci;<?2) • (Fi; P) • (P 2 ;^Dom (P) ; 1) 

+ ( ^ o m ( B i ; C i ) ; l ) - (Pi ;P)- (P 2 ;P ;C2) 
+ ( - U o m ^ u C i ) ; l ) - (P i ; P)-(P 2 ; - i£)om(P) ;1) 
+ (iii;Ci;C?2)-(Fi;P;(52).(P2 ;P) 
+ (i?j; d ; C2) • (Pi; -Z)om (P) ; 1) • (P2 ; P) 
+ (-.Dom(i2 i ;Ci) ; l ) - ( P i ; P ; d 2 ) - ( P 2 ; P ) 
+ (-.£>om(fl i ;Ci) ; l ) - ( P i ; - D o m ( P ) ;1)-(F2 ;P). 

Let us define the niters 

•D«,l,2 

A R , 1 , - , 2 

•Dfl,-.1,2 

•Dft,-,l,-,2 

•D-.fl,l,2 

•C-.fl,l,-.2 

•D-.fi,-.1,2 

= Dom(#1) 
= ^0771(^0 

= Dom (.Ri) 
= Dom(.R1) 
= ^Dom (Ri 
= —'Dom (Ri 
= -iDom (Ri 

Dom (Pi; P) • Dom (F2;P), 
Dom {Fi; P) • -Dom (P2; P), 
-.Dom (Pi; P) • Dom (P2; P), 

-Dom (Fi; P) • -Dom (P2; P), 
;Cx) • Dom (Pi;P) • Dom (F2;P), 

;Ci) • Dom (Pi;P) • -Dom (P2; P), 
;Ci) • -Dom (Pj;P) • Dom (P2;P). 

http://��D-.fi
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Since by Thm. 7.1.4 Fi^Dom{P) ;1 = (Dom(Fi) •^Dom{Fi]P)) ;1 
{i = 1,2), using the previously defined filters and Thm. 2.3.22, 

r ^ , ; P <DRX2\ (Ri;(Ci-C2) • FI;PA • F2-PA) 

+ DR,h2; (RI;CI;C2 • F,;P • F2;PA' 

+ DRA>2; {RI;CI;C2 • F^P-A • F2;P\ 

+ DR,1^2;(RI;(C1-C2) • Fi;PA) 

+ DR^-JRI&A • FDP) 

+ DR^IX, hi;(C1-C2) • F2;PA) 

+ D R ^ X ^ - C . A • F2;P) 

+ DR^I^2',RI', (C I -C 2 ) 

+ D^Rth2; (FI;P • F2;PA) 

+ D^Rili2;(Fi;P;d2 • F2;P) 

+ D^^F^P + D^R^2\F2]P. 

Applying Thm. 3.2.1 several times, 

( 

V^b;P< 

Ri;{Ci-C2) 
V 

Fv,P;C2 

V 
F2;P;C2 

\ 

) 

+ 

Rl-,Ci;C2 

V 
Fi;P 

V 
F2;P;C2 

\ ( 

;2 
\2 + 

J V 

Rv,Ci;C2 

V 
Fi;P;C2 

V 
F2;P 

•2 

Ri;(Ci-C2) \ I RuCv,d2 

+ -Dfl,l,-2;| V \;2 + DRA^2A V | ;2 
Fi;P-A J V FuP 

I fli;(Ci.Ca) \ / fli;Ci;tfa 

+ DR^X, V \;2 + DH, - , 1 ) 2 ; V \ ;2 

\ F2;P;d2 J V F2;P 
I Fv,P \ ( FV,P;C2 \ 

+ D^R,lfl\\ V M + D-R,i,2\\ V \\2 
\ F2;P;C2 J \ F2;P J 

+ r>iW,-.2;fli;(Ci-C2) + D^RI1I-,2]FI;P + D , B l , u ; f t ; P . (7.26) 
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Applying Thm. 3.2.9 and Ax. 2 in (7.26), 

V-,b;P< 

Ri 
V 

V 
F2 

V 
® 
P 
® 
P J \ \ C2 

Rx V 
+ DRtl^2; V ; V 

Fi P 

( CXC2 Cl-C2 Cy,C2 \ 

C2 \ + I V \ + ( C2 \ 

) J V c2 / \ r 
C i - C 2 Ci;<52 

+ 
1' c2 

C i - C 2 Ci;d2 

® + g> 
C2 V 

V C2 

® + ® 
c2 r 

+ DR,^2;Rv, (Ci -C 2 ) + 2 ) ^ , 1 , ^ 2 ^ 1 JP + £ ^ 1 , 2 ^ 2 ; P - (7.27) 

Hi r 

+ £>fi,-.i,2l V ; V 
F 2 P 

Fi P 

+ O-fi.1,2; V ; V 
F 2 P 

Let us define 
Split\ 
Split2 

Splits 
Splits 
Split§ 
Splits 
Splitr 

= R1V(F1VF2), Ax 

= i ? iVF 1 ; 

= RiVF-2, 
= F1VF2, 
= Ri, 
= Flt 

= F2, 

A2 

A3 

A4 

A5 

A6 

A7 

= 1 ' ® ( P ® P ) , 
= V®P, 
= V®P, 
= p®p, 
= v, 
= p, 
= p. 

Let us also define 
/ C\-C2 C\\C2 C\\C2 

Joini := 

V 

c2 
® 
c2 

+ + / c2 
® 

!' / / C2 

( C\ -C2 C\\ C2 

<8> + ® ) ;2, 
C2 1 

( v c2 
Join± := I <g> + <g> I ;2 

\ C2 V 
Join^ '•= Ci-C2, 
Joins := Joini '•= !'• 

® ;«, 



166 A Calculus for Program Construction 

It is easy to check that if C2 is antisymmetric, Joirii (1 < i < 7) as 
defined are functional relations. Thus, the term on the right hand side of 
(7.27) stands for a functional relation. From Lemma 7.8 and Thm. 2.3.18, 

Ri 
V 
F 1 ^ 
v 
F2 ) 

V 
<g> 

1 ( P \ 
® 

V p J 

+ DRAt-,2; 

+ Bfipi.z; 

+ D^Rth2; 

; 

I 

V 
Ri 
V 
Fi 

fli 
V 
F2 

Fi 
V 
F 2 

C\-C2 

® 
( d2 \ 

® 
\c2 j 

v i 
, V ; 

P \ 

V ( 
V ; 
P \ 

P ( 
V ; 
P \ 

C\ \C2 

+ / 

V 
C\C2 

® 
c2 

C\C2 

® 
C?2 

r 
® + 
c2 

® 
r \ + 
® 
c2 j 

Ci;d 2 

+ ® 
r 

Ci;d 2 

+ ® 
r 

d2 \ 
® ;2 
1' / 

Ci ;C2 
® 

/ c2 \ 
® 

v r ; 
\ -

;* 
/ 

\ -u y 

\ 

/ 

r 
® 
2 

+ Dfi,^i,^2;#i;(Ci-c2) + ^ R . i . ^ ^ n P + £>- ,H^I , 2 ; -F2 ;P . 

We then finally have 

P = G2;C1 • (G2\Ci -> C2) A C2-C2<V A Easy(Vb;P) 

=> GenDSzC(P,V b;P, DRyit2, Spliti, Ai, Joini,. • •, 

-.i?,-ii,2, Split?, AT, Join?) . (7.28) 

If we use G\ instead of G2, and define 
DR,I 

DR^ 

D-,R,1 

Al := 
A2 := 

A3 := 

:= Dom{Rl)-Dom{F1;P), 
:= D<rni{Ri)—>Dom{Fi;P), 
:= -,Dom{Rl)-Dom{Fl;P), 

V®P, Joirix := ((Ci-C2 

1', Join2 := Ci-C2 , 
P, Joins := 1', 

Splits := 
Split2 := 
Splits := 

® C2) + (Ci 

B i V F i , 
i?l, 

fl, 
;<?2 ® i ' ) ) ; i 

we can prove, under the assumption that C2 is antisymmetric, that 

P = Gi;C1 • (Gi;Ci -> C2) A C 2 - C 2 < r A £as i / ( l ' 6 ;P) 

=> GenDkC(P,Vb;P,DR:i,Spliti,Ai,Joini, 

DR^i,Split2, A2, Join2, £>-,fi,i,Splits, A3, Join3) . (7.29) 
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7.6.1.1 Finding the Minimum Element in a List 

Let the relation Has C List(Nat) x Nat be defined by the condition 

Has = Hd + Tl;Has . 

Has is a generator of type G\. Let us consider the problem of finding 
the minimum element in a list. The problem can be specified in first-order 
logic by the formula 

IMinx «=>• IHasx A Vy(lHasy => x<y) . (7.30) 

The abstract relational specification, obtained from (7.30), is given by 
the equation 

Min = Has • (Has —• •<) . 

Since the relation •< is antisymmetric and Easy(Vi,i ;Min) holds (the 
minimum of a list with just one element is that element), taking C\ := V 
and C2 := •< in (7.29) we have 

GenDkC(Min, VLi;Hd,Dom (Hd) -Dom(Tl;Min), HdV Tl, 

V ®Min, Joini, Dom (Hd) •-•Dom (Tl;Min), Hd, V, 

1'jvat,^Dom(Hd) •Dam(Tl\Min), Tl,Min, V), (7.31) 

where Join\ is defined by the condition 

Jmni = ( ( l ' -X ® <) + (V;< ® 1')) ;2 . 

Since ^ is reflexive, 1' • < — VNat- Notice also that •< = > .̂ We then 
have 

Jomi = ((l '®>:) + (h®V));2, 

which is a specification of the problem minjnum that finds the minimum 
between two numbers. 

Since Dom(Hd) = VL>-o and Dom (Tl;Min) = VL>-i, it is clear that 

Dom (Hd) • -iDom (Tl; Min) = 1' Li, 

and 

•^Dom (Hd) • Dom (Tl; Min) = 0 . 
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Recalling formulas (7.14) and (7.28), the part of the algorithm given by 

{Dom {Hd) • ̂ Dom {Tl; Min)) ; Hd; 1'; 1' jvot 

is subsumed by the base case of the algorithm. Also, since the part of the 
algorithm given by the term 

(•^Dom {Hd) • Dom {Tl; Min)) ; Tl; Min; 1' 

equals 0 (because -iDom(Hd) -Dom{Tl;Min) = 0), (7.31) is equivalent to 

GenD&C(Min,VLi;Hd,VLyi,HdVTl,V®Min,Joini) . (7.32) 

Therefore, from (7.32) and (7.14) the following algorithm (in fork alge­
braic form) is immediately at hand: 

Hd V 
Min — Vii;Hd + V£>-i; V ; (8) ;min_num . (7.33) 

Tl Min 

The algorithm presented in (7.33) corresponds to the following recursive 
function: 

Function Min(l : List(Nat)) : Nat 
Begin 

If Length(l) = 1 Then 
«- Hd(l) 

Else 
<— minjnum {Hd {I), Min {Tl (/))) 

End If 
End. 

7.6.1.2 Finding the Minimum Common Ancestor 

In [G. A. Baum et al. (1996)] we presented as an example the derivation 
of an algorithm for finding the minimum common ancestor of a pair of 
nodes in a binary tree (See Fig. 7.3). The problem is informally specified 
as follows: 

Given a binary tree t and two nodes x and y, find that 
node a in t that is the closest ancestor of x and y. 
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MCA{t,d,e)=b. 

a = MCA(t, a, d) = MCA(t, a, c) 
= MCA(t, c, e) 

p = MCA(t, c, c) 

Fig. 7.3 Some computations of the relation MCA for a tree t. 

Let us use a relation HA C (TVee(a) x a) x a (HA abbreviating has 
ancestor), which is meant to produce, given a tree t and a node x, the 
ancestors of x in t. A formal specification of a relation MCA capturing the 
problem in the language of the elementary theory of fork relations is given 
by 

t-k (x -k y)MCAa t-kxHAa A t-kyHAa A 

Vz((t*xHAz A t-kyHAz) => t*aHAz), 

and a specification of HA is given by the formula*: 

t-kxHAa <=$• 3t' (t^t' A t'root a A t'inx) . 

In [G. A. Baum et al. (1996)] we gave the following abstract relational 
specification for the relation HA: 

HA 
3 

1' 

/ n;root \ 
V 

V 

;7r, 

tBy 3 w e denote the relation that relates a tree with its subtrees, by root the relation 
that relates a tree with its root node, and by in the relation that relates a tree with its 
elements. By VTk we denote the filter over tree of height k, by VT^k the filter over 
tree whose height is greater than k, and by 1'T* we denote the filter over the set of all 
trees. 
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and defined a relation CA C (Tree(a) x (a X a)) X a (characterizing the 
common ancestors of a pair of nodes in a tree) by 

CA = ((l'<8>7r) \HA) • ((l '®p) ;HA) . 

In [G. A. Baum et al. (1996), p. 188] we derived the following recursive 
version of the relation CA: 

Prom the previously defined relations, we presented the following ab­
stract relational specification of the relation MCA: 

MCA = ((TTV CA) -(CA -> HA)) ;p . 

If we consider the relation MCA" defined by 

MCA" = (TT V CA) -{CA -+ HA), 

we cannot apply the generic algorithm derived in Section 7.6.1 because the 
specification does not have the right pattern (compare with (7.22)). 

In order to find an adequate specification for MCA", we define relations 
HA' and CA' with types 

HA' C (Tree(a) x a) x (Tree(a) x a) 

and 

CA' C (Tree(a) x (Tree(a) x (a x a))) x (Tree{a) x a) 
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as follows: 

and 

CA' = 

+ 

1'T* 
® 

r T i \ ; 
® 

l 'T* 
® 

r T x i \ 
® 
i' / 

l'T* 
® 

® 
1' / 

l 'T* 
® 

® 
1' / 

SA' = vrViM, 

l' 
® 

/ root \ 

i' 
® 

; ( ((in \ A 

H i 

1' 
® 

; / right \ ;Ci4' 

I ? ) 
Fi 

V 
® 

; f left \ -CA' . 

( ? ) 

;7r;root 

+ 

F2 

Notice that the relation CA' differs from the relation CA in that it has 
an extra input (of type Tree(a)) which is preserved and returned untouched 
as output. 

It is easy to see that if we define MCA' using HA' and CA' by 

MCA' = CA' • (CA' -y HA') , 

then MCA0 = (TTVI') ;MCA', and thus, 

MCA = (nW);MCA';p. (7.34) 

Since CA' is a generator of type Gi and /Issx and Assi hold, we are in 
the right position to use the generic algorithm derived in Section 7.6.1 in 
order to find an algorithm computing the relation MCA'. Before applying 
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the schema, notice that 

Dom (MCA') = 
l'T* 

(Dom(in®Tr) ;2) -Dom ((in®p) ;2) 

i.e., MCA' is denned in an input (t\, (t2, (x, y})) whenever x and y are nodes 
of t2. As an elementary property of trees, 

Dom (Fi;MCA') -Dom (F2;MCA') = 0, 

i.e., nodes cannot appear both in the left and right subtrees. Also, notice 
that 

^Dom (R{) • Dom (Ft; MCA') = ->Dam (R{) • Dom (F2; MCA') = 0, 

i.e., if a node is not in a tree, then it is neither in the left nor in the right 
subtrees. Thus, from the previous reasoning, the following formula holds: 

GenDkC(MCA,,Ybase;MCA',DRiit-<t,R1VF1,V®MCA,,Joini, 

£>*,-a,2, Ri V F 2 , 1 ' ®MCA', Join2, DRt^2, Ru 1', 1'), (7.35) 

where 

Vbaae;MCA' 

and 

Join! = Join2 = ((HA'"®V) + (V®HA'")) ;2 . 

Notice that by Thm. 3.2.17, Join,! and Join2 can be rewritten as 

Dom((V®HA');2);p + Dom ((HA'®V) ;2) ;TT . 
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We now have 

Ri V Ri V 
Dfl,l,-,2; V ; ® ; Joini + DR^I^] V ; ® \J0in2 

Fi MCA' F2 MC4' 
= {by Thm. 3.2.9} 

1' Ri V V R! V 
-Dfi,l,-i2; V ; ® ; ® ; Joini + Df i r i , 2 ; V ; ® ; ® ;Join2 

Fi 1' MCA' F2 1' MCA' 
= {by Joini = Joini and Ax. 2} 

1' 1' \ Ri V 
DR,I,^21 V + D R p l , 2 ; V I ; ® ; ® ; Joini. 

Fi F2 / 1' MCA' 

From formula (7.34), the following program computes the relation MCA. 

Function MCA(t : Tree(a); x,y : a) : a 
Var 

aux : Tree(oj), 
o : a. 

Begin 
(aux,o) := MCA'(t,t,x,y), 
<— o 

End. 

A program to compute the relation MCA' is obtained from formula 
(7.35) and the derivation above. 

Function MCA'(ti,t2 : Tree(a); x,y : a) : Tree(a) x a 
Var 

e : a, 
t', t" : Tree(o:). 

Begin 
If Heigth(t2) = 1 Then 

If x = y = root(t2) Then 
<- (ti,x) 

Else 
If x, y occur in left(t2) or x, y occur in right(t2) Then 

If x, y occur in left(t2) Then 
f := left(t2) 

Else 
t' := right(t2) 

file:///J0in2
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End If 
r := root(t2), 
(t",e) := MCA'fat^y), 
If ti = t" and r is an ancestor of e in t" Then 

If ti = t" and e is an ancestor of r in ii Then 

<-<*!, r) 
Else 

<- (ii,rooi(t2)) 
End If 

End If 
End. 

Notice that in order to apply the strategy and obtain an algorithm it 
was necessary to perform an embedding when defining relations HA' and 
CA'. This embedding was motivated by the methodology, and thus the 
following heuristic arises. 

Heuristic 7.4 In order to obtain a generator and a specification of the 
right form, it may be necessary to perform some embeddings. 

The algorithm can be further optimized, but, as it stands now, it allows 
us to find a solution for computing the relation MCA. The experience we 
gained from comparing the previous derivation with the one given in [G. A. 
Baum et al. (1996)], is that once the generic algorithm is available, then 
finding the correct embedding takes only a short amount of time and an 
algorithm is easily obtained. In the derivation given in [G. A. Baum et 
al. (1996)], we carried out all the derivation of the generic algorithm, plus 
details that did not help at all in deriving that algorithm. Also, from a 
methodological point of view, the approach followed here seems much more 
appropriate. 

7.6.2 Second Example 

For this example we will need the following definition. 

Definition 7.1 A list I is said to be a contiguous sublist of a list I' if 
there exist lists li and ^ such that V — l\ & / & l2, where &; denotes list 
concatenation. 
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Let us now consider the following generic problem. 

Given a list I, find the contiguous sublists I' of I satisfy­
ing (a) a condition ci, and (6) Z' is /-maximal with respect 
to all the contiguous sublists of I that satisfy the condition 
c\ ( / : List(Int) —> Int, functional). 

If we assume that we already have a specification for the generator of 
contiguous sublists GCS, then the problem is specified by the following 
formula in the elementary theory of fork relations: 

IPV <̂ =>-

IGCSV Aci(Z') AVi" (IGCSl" Ad( i " ) ^ f(l')hf(l")) • (7.36) 

From the first-order specification given in (7.36), we immediately obtain 
the following abstract relational specification: 

P=GCS;C1 • (GCS-Ci - • f;hj) . (7.37) 

The generator of contiguous sublists GCS is specified by the following 
abstract relational equation 

GCS = VLx + VLyi;STA + V Lyi;Tl;GCS, (7.38) 

where the relation STA is specified by the recursive equation 

Ed Hd 

STA = VLi + VLyi; V ;Cons + VLyi; V ;Cons . (7.39) 
CNil Tl-STA 

Intuitively, relation STA generates the contiguous sublists that STArt 
in the head of the list, and thus, the process of generating all the contiguous 
sublists can be divided between generating the contiguous sublists starting 
in the head, and generating the contiguous sublists located in the tail of 
the list. 

Since for lists of length zero or one the problem is easy, in order to derive 
a divide-and-conquer algorithm for this problem it suffices to find relations 
Split, Qi, Q2 and Join such that 

Recomp {VLyi ;P, Split, Q0, Qi,Join) 

holds. 
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= { Unfolding the specification of P given in (7.37) } 

VL*I;(GCS;CI • [GCS;Cx - f\t;f)) 

= { Unfolding the definition of GCS (cf. (7.38)) } 
(VLyi;STA + VL^1;Tl;GCS);C1 

• ( ( l ' L yi ;5TA + l ' L x , ; T/;GC5);Ci -> / ; h ; / ) 
= {By Ax. 2} 

(VL>-i;STA;Ci + l ' ^ i ; 77; GCS;d) 

•((VL>i;STA;Ci + VL>i;Tl;GCS;Ci) -» / ; £ ; / ) 
= { By (7.4) and elementary Boolean algebra } 

VL»i;STA;Ci • (sTA;d -+ / ; £ ; / ) • (77;GGS;Ci - f;f,f) 

+ VL^i;Tl;GCS;C! • [STA;Ci - / ; > ; ; / ) • ( jVjGGSjd - / ; > : ; / ) • 

Thus, 

((l'L^i^rxjco 
• (STA;d - / ; > : ; / ) • {Tl-^GCS^ - / ; > : ; / ) ) 

• (STX;Ci -» / ; > : ; / ) • (TliGCSid - / ; > : ; / ) ) • (7.40) 

Let us consider now the relation MAXSTA defined by the equation 

MAXSTA = STA\CX • (sTA-d -* f;h;f) . (7.41) 

In order to continue with the derivation we make the following assump­
tions: 

As8! : r L i ; C i = l ' L i , 

Ass2 :Dom(f) = VL., 

Ass3 : Cons;Ci = {V®Ci) ;C2;Cons, for some C2 < V, 

AsSi : (l ' /nt® 1') ; Cons;f = (g®f) ;Add, with g C Int x Int functional, 

1' / 1' \ V 
Ass5 : <g> ; C 2 = L>om ® ; C 2 I ; <g> 

STA-yCx V MAXSTA / STMjCi 

ASSQ : Cjyn;f = Co, (the empty list has /-value 0). 
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In Section 7.7 a complete derivation of the following divide-and-conquer 
algorithm for MAXSTA is presented. 

Ed V 
MAXSTA = VLi + 1 V I ; V ; ® ;JoinMAXSTA, (7.42) 

Tl MAXSTA 

where the relation JoiriMAXSTA is denned by the following conditions 

£ > i : = D o m ( / ; r < ; l ' o ) , 

A>:=£>om(/;^;r0), 

and 

JoiriMAXSTA •= 

I V V \ 1' 
C2 ; ® + ® ; Cons + -iC2; <8> ; Cons . 

\ Di;Cmi D2 J CNU 

Once we have a divide-and-conquer algorithm for computing the relation 
MAXSTA, we can continue with the derivation of a divide-and-conquer 
algorithm solving the original problem P. 

Recalling (7.40), let us concentrate first on the relation E defined by 

E:={VL>i\STA;C{) 

• (sTA;d - / ; > : ; / ) • ( j7 ;GC5;Ci -» / ; > = ; / ) • 

E = l 'Lvi ;MAXSTA • (Tl;GCS;Ci -* / ; h ; / ) (by (7.41)) 

= VL>-i; MAXSTA- Tl;(GCS;d -» f;h;f) (by Lemma 7.4) 

= VL^i;MAXSTA • Tl;GCS;d; ( / ; h ; / ) " (by (7.3)) 

= l ' i ^ i ;MA.XST4 • Tl;GCS;Cx;f;£;f (by Ax. 6) 

= lVi ;MAASTi4 • I 7 ; G C 5 ; C i ; / ; ^ ; / 
(by Thms. 2.3.19, 2.3.21 and £ = =<) 

VLyi;MAXSTA • Tl;GCS\Cx\f\^\f. (by < = y) 
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Then, 

E = VLyl ;MAXSTA • Tl;GCS;CvJ-yJ . (7.43) 

Since, by definition, the relation P produces as output those contiguous 
subsequences satisfying C\ that are also /-maximal, 

G G S ; C i ; / ; ^ = P ; / ; > ~ , 

and thus, 

E = VLyi; MAXSTA • Tl;P;f;yJ . (7.44) 

Notice that P returns /-maximal sequences, and therefore, even though 
there may be several /-maximal subsequences for a given sequence, their 
/-value must be the same. Thus, the relation P ; / is functional. This can 
be proved syntactically by showing that (P ; / ) " ; ( P ; / ) < 1', and is left as 
an exercise. 

Resuming the derivation for the relation E, we have 

E=VL»i; MAXSTA- Tl;P;f;y,f (by (7.44)) 

= l'L>-i ;MAXSTA • 77 ;P ; / ; "X; / (by Thms. 2.3.19 and 2.3.21) 

= VL^; MAXSTA- Tl;P;f;l;f (by^=^) 

= VL>.i;(MAXSTA- T / ; P ; / ; ^ ; / ) (by Thm. 2.3.22) 

MAXSTA 
= VLyi; | V | ;2 (by Thm. 3.2.1) 

r/;P;/;d;/ 
MAXSTA 

VLyi; | V ] ; | ® | ;2 (by Thm. 3.2.9) 
Tl;P 

MAXSTA 
= l ' i ^ i ; | V I ;Dom I ® ;2 | ;TT. (by Thm. 3.2.19) 

Tl;P J \ / ; r < 

Let us concentrate now on the relation F defined by 

F := 1' ^>-1; Tl; GCS; C\ 

• (sTA;d -» / ; > : ; / ) • (TI;GCS;CX - / ; > : ; / ) . 
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A derivation similar to the one used for relation E in order to arrive to 
(7.43) shows that 

F = VLy1-Tl;P • STA-C^f-^-J . (7.45) 

Since by definition the relation MAXSTA produces /-maximal subse­
quences that start in the head of the list given as input, 

5Ti4;Ci;/;>- = MAXSTA; f;^ . (7.46) 

Thus, 

F = YLyi;Tl;P • STA;Cx;f;^;f (by (7.45)) 

= VLy1;Tl;P • MAXSTA; f;y;f. (by (7.46)) 

We then deduce that 

F = VLy!;Tl;P • MAXSTA;f;y ;f . (7.47) 

A similar proof to the one showing that the relation P;f is functional, 
shows that MAXSTA;/ is also functional. Then, 

F = VLy1;Tl;P • MAXSTA;f;y;f (by (7.47)) 

= l 'Lxi ;Tl;P • MAXSTA; f;~;f (by Thms. 2.3.19 and 2.3.21) 

= VL.i;Tl;P • MAXSTA;/;=<;/ (by^=d) 

= VLyi;(Tl;P • MAXSTA;f;<;f) (by Thm. 2.3.22) 

MAXSTA;f;<;f \ 
YLyi; | V \;2 (by Thm. 3.2.1) 

/ ; = < ; / \ 
= VL»i;\ V | ; | ® \;2 (by Thm. 3.2.9) 

l ' is- i ; | V | ;Dom I ® ;2 J ;p. (by Thm. 3.2.19) 

We have now arrived to the first algorithmic expression for computing 
the relation P. Since VLi;P — V Li and by (7.40) we have 

VLyi;P = E + F, 
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then P equals 

/ MAXSTA \ / / 
VLi + l ' L ^ i ; V ;Dom <S> ;2 | ;TT 

V T/;P / \ / ; ^ 

V T/;P / \ / 

Let us define the filters D3 and D4 by: 

D3:=Dom((f ® / ; d ) ; S ) , D4 := Dom ((f; ± ® / ) ;2) 

Applying Ax. 2, we arrive at the equation 

P = l 'L i + I V . ; V ;(£»3;TT + D4;p) . (7.48) 
77;P 

Even though (7.48) is algorithmic, the algorithm can be improved. Let 
us define the relation MAXF by the equation 

MAXF = VLyi; (MAXSTA V Tl;P) . 

Unfolding the definitions for relations MAXSTA and P given in (7.42) 
and (7.48), and applying elementary properties of fork algebras, 

MAXF = VLyi; 

( Hd V 

V ; ® ;JoinMAXSTA 
Tl MAXSTA 

V 
V Tl;VLi 
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+ 1' L ^ 1 : 

/ Hd V 
V ; <g> \JoiUMAXSTA 
TI MAXSTA 

V 
MAXSTA 

TI; V ;(D3;ir + D4;p) 

- v ' 

Let us analyze terms T\ and T2, one at a time. For term Ti, the subterm 
Tl;V L\ equals 1' i?\Tl. This implies that the input for the whole term must 
be restricted to lists of length two. Thus, 

Ti = VL2-, 

( Hd V 

V ; <g> \JoiUMAXSTA 
TI MAXSTA 

V 
\ TI 

(7.49) 

We then proceed as follows: 

r 

T I = I 'L* ; 

/ Hd 
V ; <g> ;JoinMAXSTA 

TI MAXSTA 
V 

V TI 

(by (7.49)) 

= VL2; 

/ 

\ 

Hd 
= 1'L»; V 

Tl 

Hd 
V ; 
Tl 

/ 

> 

I 

r 
® ; JoiriMAXSTA 

MAXSTA 

(Hh „ 
\ Tl J 
V 
® ; JoiriMAxsTA 

MAXSTA 
V 
P 

\ 

) 

\ 

) 

(by Thm. 3.2.2) 

(by Thm. 3.2.4) 

file:///JoiUMAXSTA
file:///JoiUMAXSTA
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Since the lists that will reach the input of the relation MAXSTA are all 
of length one, and l'x,i; MAXSTA = l '^i , we then conclude 

Ti = l'jra ; (HdV Tl) ; {JoiUMAXSTA^P) • 

Regarding term T2, a derivation similar to the one performed from 7\ 
allows us to prove that 

Ed V 
T2>VL^2- V ; ® 

Tl MAXF 

( V \ 
® ; JoiUMAXSTA 

\ P;(D3;TT + DA;p) J 

(7.50) 

Notice that even though we do not arrive at an equality, the term on 
the right hand side of (7.50) has the same domain as term T2, and therefore 
it is a refinement. Thus, the equation 

MAXF = l 'L 2 ; (ffdV 27) ; (JOIUMAXSTA VP) 

I V 

Ed 

+ iv»; v ; 
Tl MAXF 

\ 
<8> ; JOIUMAXSTA 

IT 

V 
V p;(D3;ir + D4;p) J 

(7.51) 

is a divide-and-conquer algorithm computing a refinement of the relation 
MAXF. Equation (7.51) can be slightly optimized, by using properties of 
lists and Ax. 2, to the equation 

/ 
Ed 

MAXF = VLh2] V 
Tl 

V 

® 
JoiUMAXSTA 

V 

P 

V V 

+ 
VL»i MAXF 

I v \\ 
<8> \JoiUMAXSTA 

V 
V p;(D3;ir + D4;p) ) ) 

(7.52) 

file:///JoiUMAXSTA


Examples 183 

Finally, the problem P is solved using the auxiliary algorithm MAXF 
as indicated by the following equation: 

P = VLx + l V i ;MAXF; {D3;7T + D^p) . (7.53) 

Eq. (7.52) corresponds to the following program. 

Function MAXF(l : List(Int)) : List(Int) x List(Int) 
Var h : Int, t, o\, o2, h, h '• List(Int), 
Begin 

h := Hd(l), t := 77(0, 
If Length(t) = 1 Then 

If C 2 (M) Then 
If f(t) < 0 Then ox := [h] 
Else oi := I 
End If 

Else 
o\ := [h] 

End If 
<-{oi,t) 

Else 
<ii,i2> :=MAXF(t), 
If C2(h,k) Then 

If f(k) < 0 Then 0l := [h] 
Else ox :— [h : l\] 
End If 

Else 
01 := [h] 

End If 
If f(h) > f(h) Then o2 := lt 

Else 02 := I2 
End If 
<- (01,0-2), 

End If 
End. 

In the remaining part of this section we will derive algorithms for solving 
two problems whose specifications are instances of the generic problem P. 
The problems that we will use as examples are related to problems already 



184 A Calculus for Program Construction 

studied in the literature. The first problem consists of finding the sublist 
with maximum sum. In [D. Smith (1987)] a divide-and-conquer algorithm 
for solving this problem is derived. The second problem consists of finding 
the longest plateau. An algorithm solving a weakened version of this prob­
lem - the input list is assumed to be sorted - is derived in [D. Gries (1981)] 
using the predicate transformer wp (weakest precondition). 

7.6.2.1 Finding the Contiguous Sublists of Maximum Sum 

The problem of finding a contiguous sublist of maximum sum was treated as 
a case study in [D. Smith (1987)]. There, a divide-and-conquer algorithm is 
derived for solving this specific problem. The problem is informally specified 
as follows. 

Given a list / having integer numbers as elements, find 
a contiguous sublist of I with maximum sum. 

This problem has a clear specification in the elementary theory of fork 
relations given by the formula: 

I MAXSUM I1 4=^ 

IGCSV AVl"(lGCSl" => Sum(l')hSum(l")), (7.54) 

where Sum C List(Int) x Int computes the sum of the elements of the 
list given as input. A relational specification for MAXSUM is given by the 
following equation: 

MAXSUM = GCS • (GCS -» Sum; h ;Sum") . 

If we take C\ := 1', then (7.54) has the same shape as (7.37). Let us 
check that assumptions Ass\-Ass§ hold. 

Since C\ = V, V^i ;Ci = l '^i , and thus Assi holds. 
Since Dom (Sum) = 1'L*, ASS^ also holds. 
If we define C<i := 1', 

r r 
Cons;C\ = Cons;V — Cons = ig> ;V;Cons = ® \C2\C0ns, 

V Cl 

and Assz holds. 

file:///C2/C0ns
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Since 

1' Int 1' Int 

<g> ; Cons;Sum = <g> ;.<4<id, 

1' Sum 

denning g := V j n t we are done with Ass^. 
Regarding Asss, notice that 

r r r 

® ; C 2 = <g> ;1 ' = <g> . 

Notice also that since Dom (MAXSTA) = VL±i, 

I v \ ( v \ v 
Dom <g> ;Ci \ — Dom <g> = <g> 

\ MAXSTA / \ MAXSTA J l 'Lxi 
Then, 

/ r \ r r r r 
Dom I <g) ; C 2 ; <g> = <g> ; <g> = ® , 

\ MAXSTA J STA;C! VLhi STA STA 

and Asss holds. 
Finally, since C^ulSum = Co, Ass6 holds. 
If we now instantiate the relational algorithms given in (7.52) and (7.53), 

we have 

MAXSUM = VLi + VLyi ;MAXF; (D3;n + D4;p), (7.55) 

where 

Sum \ l Sum; ^ 
D3 = Dom ( <g> ; 2\ and £>4 = Dom ® ; 2 

Sum; < I \ Sum 
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The relation MAXF is defined by 

Hd 
MAXF = VLi:2; V ; 

Tl 

V JoiriMAXSTA 

® ; V + 
IV p 

V V 
® ; ® 

l ' i ^ i MAXF 

( V \ 
® ;JoiriMAXSTA 

•K 

V 
V p;(D3;n + Di-p) J 

(7.56) 

where 

JoiriMAXSTA = 

V V \ 
(g> + <gi I ;Cons. 

Dom (Sum; •< ;l'o) ;CNU Dom(Sum;>:;l'o) J 

Equations (7.55) and (7.56) correspond to the algorithms below. 

Function MAXSUM(l : List(Int)) : List(Int) 
Var 

h, h '• List(Int) 
Begin 

If Length(l) = 1 Then 

Else 
(h,h) :=MAXF(l) 
If Sum(li) > Sum(l2) Then 

< - J i 
Else 

End If 
End If 

End. 
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Function MAXF(l : List(Int)) : List(Int) x List(Int) 
Var h : Int, t, o\, 02, h, h '• List(Int) 
Begin 

h := Hd(l), t := Tl{l) 
If Length{t) = 1 Then 

If Sum(t) < 0 Then 01 := [h] 
Else o\ := I 
End If 

Else 
(h,l2) :=MAXF(t) 
If Sumih) < 0 Then oj := [h] 
Else 01 := [/i: li] 
End If 
If Sum(li) > Sumfo) Then 02 := h 
Else 02 := 2̂ 
End If 
«- <oi,o2) 

End If 
End. 

7.6.2.2 Finding the Longest Plateau 

The problem we will solve in this section is a strengthened version of a 
problem used as example in [D. Gries (1981)]. Therein, given a sorted list, 
it is given to find the longest plateau, i.e., the longest contiguous sublist 
of the input list whose elements are all the same. Here we will drop the 
assumption of the input list being sorted, and will derive an algorithm for 
finding the longest plateau in an arbitrary list of integers. The problem is 
informally specified by the following sentence. 

Given a list /, find the longest plateau p in /. 

A formal specification is given by the following formula in the elementary 
theory of fork relations: 

ILPLATEAUp <=> IGCSp A Plateau(p) 

A Vp' (IGCSp' A Plateau(p') =>• Length(p)hLength(p')), (7.57) 
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where the unary predicate Plateau is denned by the formula 

Plateau(p) <==> VxVy (pHasx ApHasy => x = y) . 

A relational specification of the problem LPLATEAU (obtained from 
(7.57)) is given by the equation 

LPLATEAU = (GCS; Plateau) 

• (GCS;Plateau -> Length;>z;Length"), (7.58) 

where the relation Plateau is defined by the recursive equation 

Hd V ( V \ 
Plateau = VL±i + l 'i>-i; V ; <g> ;Dom I <g> ;2 I ;Cons . 

Tl Plateau \ Hd J 

Notice that (7.58) has the same shape as (7.37). Let us check that 
assumptions Assi-Asse hold. 

Assi is trivially true. Since Length is total on the set of lists, Ass^ also 
holds. Let us define 

C2 = ( r ® r L o ) + Dom((V®Hd);2) . 

Then, 

Cons; C\ 

= Cons; Plateau 

I Hd V I V 
= Cons; I r L x i + VLyi; V ; ® ;Dom 

\ Tl Plateau \ Hd 

Hd V I V 
= Cons;V L-<i + Cons;V Lyi; V ; <g> ;Dom\ ® 

Tl Plateau \ Hd 

V V Hd V I V \ 
= <8> ; Cons + ® ; Cons; V ; ® ; Dom I ® ; 2 1 ; Cons 

VLo l ' L v i Tl Plateau \ Hd ) 

V V V I V \ 
— ® ;Cons + ® ; ® ;Dom [ ® ;2 J ;Cons 

Plateau;VLo 1 ' L ^ 1 Plateau \ Hd J 

V V / V 
= ® ; Cons + ® ; Dom j <g> ; 2 | ; Cons 

Plateau;!'Lo Plateau \ Hd 
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V ( V ( V 

® ; <8> + Dom ® ; 2 | | ; Cons 
Plateau \ V Lo \ Hd 

V 
<S) \C2\C0ns. 

Plateau 

Thus, Assz also holds. 
Regarding ASS4, notice that 

l ' / n t l ' / n t i ^ l 

® ; Cons; Length = <g> ;̂ 4cW, 
1' Length 

and defining <? := l ' / n t ; Ci, ^4sS4 holds. 
In a similar way assumptions Asss and Ass§ are proved. 
If we now instantiate the relational algorithms given in (7.52) and (7.53), 

we obtain 

LPLA TEA U = VLi + V L11; MAXF; (L>3; ir + L>4; p) , (7.59) 

where 

( Length \ / Length; ^ 

(2) ; I J and D4 = Dom j ® ; I? 
Length; •< ) \ Length 

The relation M^XF is defined by 

Hd 
MAXF = VL>i; V ; 

Tl 

V JoinMAXSTA 

<g> ; V + 

1 ' L I P 

V V 
<8> ; ® 

l'L>.i AL4XF 

® ; JOIUMAXSTA 

n 
V 

V P;(£» 3 ;TT + £>4;p) / -

file:///C2/C0ns
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where 

JoinMAXSTA = 

/ r r 
C2 ; <8> + ® | ;Cons 

\ Dom (Length;^ ;1'0) ;CNU Dom (Length; >z ;1'0) 

r 
+ -1C2; <S> ; Cons . 

Cm; 

Notice that Dom (Length; d ; l 'o ) = l'z,° and Dom (Length; >z;V0) = 
l 'Lxo. Then, 

/ r r \ l' 
JOIUMAXSTA = C2; <8> + <8> ; Cons + -iC2; <g> ; Cons 

r r 
= ^2 ; ® ;Cons + -iC2; (g) ;Cons. 

V Lyo Cf/ii 

Since C2 = (l ' lgl '^o) +£)om ((V®Hd) ;2), simple equational reason­
ing allows to deduce that 

-iC2 = (V®VL>o);^Dom((V®Hd);2) . 

Then, 

r 
® ; JoinMAXSTA = 

<g> ; Dom <g> ;,2 +->Dom \ ® ;2 \ ; ® ) ; Cons. (7.60) 
IV V V Hd ) \Hd J CNil 

Notice also that 

r r 
® ;JoinMAXSTA= ® ;T . (7-61) 
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Thus, 

VL>-2;MAXF 
= {by (7.60) and (7.61)} 

Hd 
V 
Tl 

V T V 
® ; V + ® 

MAXF 

= {by Thm. 3.2.9 and Ax. 2 } 

V ; 
Tl 

7T 

V 

\ p; (D 3 ;7r + D4;p) ) 

V V V 
® ; V + 

/ M 

l ' L M MAXF 
V p;(D3;* + Di]P) J 

T 
® 
V 

We then have 

Hd 
MAXF = VLt2; V ; 

Tl 

V V 
® ; V + 

r r 
® ; ® 7T 

V 

T 
; ® . (7 .62) 

r 
\ p;(D3;n + Df,p) / . 

Equations (7.59) and (7.62) correspond to the algorithms below. 

Function LPLATEAU(l : List(Int)) : List(Int) 
Var 

Zi, Z2 : List(Int) 
Begin 

If Length(l) = 1 Then <- I 
Else 

(h,l2) :=MAXF(l) 
If Length(li) > Length(l2) Then <— li 
Else <- Z2 

End If 
End If 

End. 
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Funct ion MAXF(l : List(Int)) : List(Int) x List(Int) 
Var h : Int , t, o\, 02, h, h • List(Int) 
Begin 

h := Hd(l), t := Tl{l) 
If Length(t) = 1 Then 

°2 := t, h '•— t 
Else 

{WM) :=MAXF{t) 
If Length(li) > Length(l2) Then o2 := h 
Else 02 := h 
End If 

E n d If 
If h = Hd{h) T h e n 0 l := [h : h] 
Else o\ := [h] 
E n d If 

* - (01 ,02) 

End. 

7.7 A D f e C Algor i thm for MAXSTA 

In this section we include the complete derivation of the algorithm for 
computing the relation MAXSTA given in (7.42). We start by deriving the 
base case of the algorithm, that is, when the input list has length 1. 

VLi; MAXSTA 

= VLi;(sTA;C1 • (STA;d - / ; > : ; / ) ) (by (7.41)) 

= l 'Li;STi4;Ci • 1'L»; (STA;d - f;hj) (by Thm. 2.3.17) 

= I V ;Ci • l ' L i ; ( l ' L i ;52M;Ci - » / ; > : ; / ) (by Lemma 7.4) 

= l 'L i ; d • l ' L l ; ( l ' L , j d -» / ; >r ; / ) (by (7.39)) 

= r i i ; C 1 • l ' L i ; C i ; ( / ; > : ; / ) " (by Lemma 7.3) 

= 1'LI - 1 ' L I ; ( / ; > : ; / ) " (byA S S l ) 
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= 1'L> • 1'LI ; / ; £ ; / (by Ax. 6) 

= l ' i i • VLi;f;l;f. (by Ax. 4 and £ = <) 

Notice also that 

i ' L i ; / ; d ; / > i ' i i ; / ; / ( = < > i ' j » t ) 

> l ' t i ; / ? o m ( / ) (byDef. 2.5) 

= 1 ' L I ; 1 ' L - (by Ass2) 

= l ' L i - l ' L . (by Thm. 2.3.7) 

= 1' £i. (property of lists) 

Thus, since l 'L i ; / ; : < ; / > l ' L i , 

V Li; MAXSTA = V Li . (7.63) 

Once the base case has been derived, let us concentrate on the derivation 
of the recursive case. Since we are looking for a divide-and-conquer solution, 
we must find relations Split, Q\, Q2 and Join such that the predicate 

Recomp (VL>-i ;MAXSTA, Split,Qi,Q2, Join) 

holds. 
If we unfold the definition of STA in MAXSTA, and apply properties of 

the relational implication, we can prove that 

V L^ 1; MAXSTA = 

Hd \ I Hd 

1 ' L - I ; V ;Cons;CA • V iCons;^ - • / ; > ; ; / 

C-Nil I \ ^Nil 

Hd 
V ;C*ons;Ci - / ; > : ; / 

Tl;STA 

Hd \ / Hd 

+ U V ; V ; C O T W ; C I ) • V ;Coru;Ci -» f;fj 
Tl;STA J \ CNil 

Hd 

T7;ST.A 
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We will call A the first term in the sum, and B the second one. Let us 
analyze term A first. 

Hd \ I Hd 
A = [ l ' z , x i ; V ;Cons;Ci\ • V ;Cons;C1;f;<;f[ 

CjVil / \ Cffu 

Hd 
V ;Cons;Ci -» f;hj) (by Lemma 7.3) 

Tl;STA 

Hd I Hd 
= VLyi; V ;Cons;Ci • V ; Cons;d -> / ; h ; / | (by Thm. 2.3.17) 

CAW \ 77;S7V1 

Hd ( Hd \ 

(by Ass\ and ASS3) 

Hd I Hd 
= l ' L ) - i ; V ;Con« • V ;C2;Cons -+ f;h;f 

Tl;CNil \ Tl;STA;d 

(by Def. 2.5 and Thm. 2.3.14) 

Hd V / Hd V 
= l ' t > - i ; V ; <g> ;Cons • I V ; <g> ;C 2 ;Cons -> / ; > ; ; / ' 

T/ C M , \ 77 STA;Ci 

(by Thm. 3.2.9) 

Hd I V I V 
= l ' L n ; V ; ® ;Cems • <g> ;C2;Cons -> / ; > : ; / 

r i V CNil \ STA;d 
(by Thm. 2.3.17 and Lemma 7.4) 

Hd / 1' 1' 
= l ' L x i ; V ; ® ;Cons • <g> ; C 2 ; Cons; ( / ; > : ; / ) " (by (7.3)) 

Tl \ Cm STA-C-, 

Hd / 1' 1' _) 
= VLyi; V ; ® ;Cons • <g> \C2\Cons;f\<\f\ 

Tl \ Cm STA;d 

(by Ax. 6 and d = b ) 

Hd V V _ \ 
= r L v i ; V ; ® ;Cons • ® \d\Cons\f;^.j\ 

Tl \ Cm STA;d J 
(by Thms. 2.3.19 and 2.3.21) 

Hd I V V \ _ 
= l ' L s - i ; V ; <g> ;Cons • <g> ;C*2; ConsJ; y;/ (by X = >-) 

Ti \ CNil STA;d / 
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Hd V V g \ 
= l ' L >- i ; V ; ® ;Cons • ® ; C 2 ; ® ;Aci<f;>-;/ (by ASSA) 

Tl \ Cm STA;CX f 

Hd / V V g;h \ 
= VL^X\ V ; ® ;Cons • ® ; C 2 ; ® ;A<M;/ . 

(by property of Add) 

Then, A equals 

Hd / 1' 1' g;y 
VLyi; V ; ® ;CWs • <g ;<72; ® jXrfd;/ | . (7.64) 

n V Cmi STA;C! / ;>-

Notice that by monotonicity of the operators involved, 

r g;h l 
<g> ;C2 ; (g ;Add;f < <g ;Cons . (7.65) 

5 Z 4 ; d / ;>- 1 

Let us define 

r r g-,h 
Ai = <g ;Cons • ® ;C2 ; <g> ;Add;f 

Cm STA;d / ;> -

Then, 

r i ' <?;>: u i 
Ai = ® ;Cons • (g) ;C2j ® ;Add;f • ® ;Cons 

Cm STA;C! / ; > - 1 

(by Def. Ai and (7.65)) 

r l' g;> v O' + l' 
= ® ; Cons • ® I C?2; ® ; Add; / • ® ; Cons 

Cm STA;Ci / ; > - 1 

(by Def. 0' and BA) 

r v g;t 7~ff F~\ 
= ® ;Cons • <g) ; C 2 ; ® ;Add;f • I ® + ® ; Cons 

Cj«, S7Vl;Ci / ;> - V 1 1 / 
(by Thm. 3.2.11) 
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V V g;y I 0' 1' ^ 
= <g> ; Cons • ig) ; Ci; ® ; Add; / • I ® ; Cons + ® ; Cons 

CNil STA;Ci f;y \ 1 1 ^ 

1' 
= <g> ; Cons 

1' 
® 

STA;Ci 

g;h 
;C2; ® 

f;y 
;Add;f • 

0' 
® 
1 

; Cons 

(by Ax. 2) 

1' ff;b u 1' 
® ; C 2 ; ® ;Add;f • ® ;Cons. (by BA) 

S7Vi;Ci / ; > - 1 

We then have 

Ai = <g> ;Cons • <g> ;C2 ; <g> ;Add;f • <g> ; Cons 
Cw a STAid f;>- 1 

A2 

(8 ;C2 ; ® ;Add;f • <g> \Cons. (7.66) 
5rA;d /;>- 1 

(l'®Cjvij); Cons -yl2 

v r g-y ^ o> 
® \Cons • ® ;C2| ® ;Add;f • ® ;Cons (by Def. A2) 

C w S 7 M ; d / ; > - 1 

(by BA) 

(by Thm. 2.3.21) 

(by Thm. 3.2.20) 

(by Thm. 2.3.20) 

(by Thm. 3.2.8) 

> (V®CNil) ;Cons -(0'®1) ;Cons 

V 
= ® ; Cons • 

(•Nil 

1' 
= ® ; Cons • 

C-NU 

/ r i' 
= j ® • ® 

\ CNU 1 

r 
= ® ; Cons. 

0' 
® ; Cons 
1 

1' 
® ; Cons 
1 

; Cons 

file:///Cons
file:///Cons
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Thus, 

(1' ®CJV«) ; Cons -A2 = (V ®Cmi) ; Cons . (7.67) 

For the next derivation we will use the following valid property that 
follows from ASS4: 

g;h v v 
<g> ;Add;f • ® = O . (7.68) 

r 
® ; Cons • A3 

1' 1' <?;>: ^ 1' 
® ;Cons • ® ; C 2 ; ® ;Add;f • ® ;Cons (by Def. A3) 

C w , 5TA;Ci / ; > - 1 

r r r 
= ® ;Cons • ® ; C 2 ; <S> ;Cons (by (7.68)) 

Cjvii STA;d f-yj 

V V V 
® ;Cons • ® ; C 2 ; 0 ;Cons (by Thm. 2.3.21) 

Cm STA;Ci f;yj 

V 
;C2) ® ;Cons (by Thm. 2.3.20) 

CNil STA;d / ; > - ; / 

1' 
® • Dom 1 ® 

v MAXSTA 
;C2j 

i' 
; ® 

STA;d 
; ® ; Cons 

(by Ass 5) 

/ r / r \ r r 
= ® • Dom ® ;C 2 ; ® ; ® ;Cons. 

\ CWi, \ MAXSTA J STA;d;f;y f J 
(by Thm. 3.2.10) 

Since the relation MAXSTA produces /-maximal lists as output by def­
inition, then 

STA\Cx\f\>- =MAXSTA;f;y . (7.69) 

If we denote by D the filter Dom ((V® MAXSTA) ;C2), then the deriva-
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tion continues as follows: 

1' 
® ; Cons • A3 

CNU 

V V 
® • D; ® ;Cons (by (7.69)) 

Cm MAXSTAJ-yJ J 

V V V \ 
® • (D + -iD);D; ® ; ® ;Cons (by Thm. 7.1.1) 

Cjvii MAXSTA-J-y f 

V V V \ 
® • D ; D ; ® ; ® ; Cons 

CWi, MAXSTA-J ;>- f 

I V V V \ 
+ ® • ~<D;D; ® ; ® ; Cons (by Ax. 2 and BA) 

I C M , M A X S T A ; / ; ^ / / 

l' r r r \ 
® • D;D; ® ; ® ; ® \Cons 

Cm MAXSTA-J y f J 

+ I ® • - . D ; l I ;Cons (by Thm. 3.2.10 and Lemma 7.1) 

1' r r r \ i' 
® • D; ® ; ® ; ® \Cons + -<D; ® \Cons 

CNi, MAXSTA-J >- f J Cm 

(by Thms. 2.3.19, 2.3.21, and 2.3.8) 

l' l' r r \ i ' 
® • D; ® ; ® ; ® ] ;Cons + - iD; ® ;Cons 

Cml MAXSTA-J ± f J C M , 
(by Thm. 3.2.20 and ~ = ;<) 

I V V \ 1' 
= D ; ® • ® ;Cons + ->D; ® ; Cons 

V l ; l ' L o MAXSTA-J-<\f ) Cm 

(by Def. Cm, and Thm. 3.2.10) 

1' 1' 
= D; ® ;Cons + -.£>; ® ; Cons (by Thm. 2.3.22) 

M A X S 7 V l ; / ; ^ ; / ; l ' L o C w , 

1' 1' 
= D; ® \Cons + ->£); ® ; Cons (by Asse) 

MAXSTAJ-<;C0;VLo C M 

file:///Cons
file:///Cons
file:///Cons
file:///Cons
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r r 
= £>; ® ;Cons + -iD; ® ;Cons (by Def. Co) 

MAXSTA;f;<;V0;l;VLo CN« 
V V 

= D; <g> \Cons + -•£); <gi ;Cons. 
MAXSTA;Dom(f;^;V0);CNil Cm 

(by Thm. 2.3.14 and Def. Cm) 

Thus, 

(l'(g)Cjvi;) ;Cons • A3 = 

V V 
D; O ;Cons + -iD; ® ;Cons . (7.70) 

M4XSr .4 ;£>om( / ; ^ ; ro ) ;C m ( CM , 

Recalling the previous definitions and derivations, 

Hd I V V g;h \ 
A=VL^i; V ; ® ;Cons • ® ; C 2 ; <g> J ^ d d ; / (by (7.64)) 

T/ \̂  Cm STA;d f;y J 

= VLyi;(HdVTl);A1 (by Def. Ai) 

Hd I V V g;h ^ 0' 
= VLyi; V ; <g> ;Cons • <g> ; C 2 ; ® ;>4dd;/ • <g> ;Cons 

Tl \ Cm STA-C-, f;^ 1 

r g;h v \ 
® | C 2 ; ® ;Add;f • g> ; Cons (by (7.66)) 

S7Vl;Ci /;>- 1 J 
Hd / V 

= VLyi; V ; ( <g> ;Cons A 2 -A 3 | (by Def. A2 and A3) 

r/ V cm 
Hd I V 

= VL>X; V ; ® ; C o n s - A 3 | (by (7.67)) 
Tl \ CNil 

Hd I V 
= VLyi; V ; D ; ® ;Cons 

Tl \ MAXSTA; Dom ( / ; •< ; 1' o) ; C m 

+ - .D; <g> ; Cons | (by (7.70)) 
CNU 

file:///Cons
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Hd I V 
= l ' i j - i ; V ; D ; ® ; Cons 

Tl \ MAXSTA;Dom (f; X ; 1'0) ; CWii 

+ - .D; ® -Cons . (by 2.3.14 and Def. CAKJ) 
MAXSTA;CNil ) 

Then, 

Hd I V 
A = VLyi; V ; I D; <g> ;Cons 

Tl \ MAXSTA;Dom(f;±;V0);Cm 

V \ 
+ ->D; «) ;Cons . (7.71) 

MAXSTA ;Cj«, / 

In order to continue with the derivation of a divide-and-conquer algo­
rithm for the relation MAXSTA, proceeding along the lines of the derivation 
for A, we deduce: 

Hd V 
B = VLyi; V ;D; ® ;Cons . (7.72) 

Tl MAXSTA; Dom (f;y;V0) 

Let us define the following partial identities: 

D i : = r > o m ( / ; ^ ; l ' o ) , 

D2:=Dom(f;h;V0). 

Joining the results for A (Eq. (7.71)) and B (Eq. (7.72)) to the derivation 
of the base case (Eq. (7.63)), we obtain 

MAXSTA = VLi + 

Hd I V V \ 
1 ' L » I ; V ;D; I ® + <8> J ;Cons 

Tl \ MAXSTMD^Cm MAXSTA; D2 J 

Hd V V 
+ VLyi; V ;->D; <g> ; <g> ;Cons, 

Tl MAXSTA CNU 
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which, by Ax. 2 and Thm. 3.2.10, yields the equation 

MAXSTA = 

Ed V / 1' 1' 
l'z,i + 1'L>-I; V \D\ ® ; <g> + ® | ;Cons 

Tl MAXSTA V Di;Cjvtf £>2 

Ed V V 
+ VLyi; V ;-.£>; ® ; ® ; Cons. (7.73) 

TJ MA-XSTA CMJ 

Equation (7.73) provides a recursive algorithm for computing the re­
lation MAXSTA, but according to our definitions it does not follow the 
pattern of divide-and-conquer algorithms. Recalling the definition of the 
filter D, it is easy to prove that 

(1) D; (V®MAXSTA) = {V®MAXSTA) ;C2, 

(2) -.£>; (V®MAXSTA) = {V®MAXSTA) ;^C 2 . 

The proofs are as follows. 

r r 
D; ® = D; ® (by (7.41)) 

MAXSTA STA;Cx • MAXSTA 

( V V \ 
= D; ® • ® (by Thm. 3.2.8) 

\ STA\Ci MAXSTA ) 
V V 
® • D; ® (by Thm. 2.3.22) 

STA;Cl MAXSTA 

V V 
= ® • ® ;C2 (by Ass5) 

STA;d MAXSTA 

V V 
;C2 (by Thm. 2.3.22) 

STA;d MAXSTA 
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V 
® ;C2 (by Thm. 3.2.8) 

STA;Ci • MAXSTA 

V 
® ;C2. (by (7.41)) 

MAXSTA 

Regarding property (2), we will use the following property from Boolean 
algebra. If a-b = 0, a+b = c, a-d = 0, and a+d = c, then b = d. Notice 
now that using Ax. 2, 

r r r 
D; ® + ->D; ® = ® 

MAXSTA MAXSTA MAXSTA 

Also, 

r r 
D; ® + ® ;-iC2 

MAXSTA MAXSTA 

V V 
® ;C2 + (2) ; - > C 2 (by (1)) 

MAJf5T4 MAXSTA 

V 
O ; (C2+-C 2 ) (by Ax. 2) 

AL4XST,4 

r 
(8» (by Thm. 7.1.1 and Ax. 5) 

MAXSTA 

It is also clear that 

r r 
D ; <g) • ->D; <S> = 0 

MAXSTA MAXSTA 
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Finally, 

1' 1' 
D; ® • <g> ; - > C 2 

MAXSTA MAXSTA 

V V 
® ;C2 • ® ; - C 2 (by (l)) 

M4XST.A MAXSTA 

= 0. 

Using then the previously mentioned property about Boolean algebras 
we deduce that (1) holds. Then, using (1) and (2) in (7.73), 

MAXSTA = 

V Hd 
VLx + VL»i; V ; g) 

Tl MAXSTA 

If we define 

JoinMAxsTA •= C2; 

1' 1' 
C2; I ® + ® I ;Cons 

•Di; CJWI D 2 

1' 
+ -nC2; ® ;Cons . (7.74) 

CAM 

r r \ r 
® + ® ;Cons+- .C 2 ; ® ;Cons, 

then, by (7.74), the predicate 

DkC {MAXSTA, VLi, l ' L w ; (#tfV 7Y), 1', MAXSTA, JOITIMAXSTA) 

holds. 

7.8 Comparison with Previous Work 

The notion of generic algorithm is not new. Already in 1985 the wide 
spectrum language CIP-L [F. L. Bauer et al. (1985)] allowed us to work 
with program schemes. Also, program design strategies were incorporated 
as transformation rules. The advantage of our calculus is its completeness, 
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for there is no theorem showing that given any two program schemes Pi 
and Pi with the same semantics, it is possible to carry on the derivation 

Pi 

Pi 

in CIP-L. 
In [B. Moller (1991); M. Russling (1996)a; M. Russling (1996)b] a frame­

work for program construction based on an algebra of formal languages is 
presented. In [M. Russling (1996)b] these algebras are used for deriving 
generic algorithms for the treatment of graphs. The operators from the 
algebras are defined in set-theory using variables over 'words' besides vari­
ables over languages. From these set-theoretical definitions, the author 
derives some valid properties only involving variables that range over for­
mal languages, but, opposed to the fork algebra case, there is no proof of 
whether these properties axiomatize the algebras or not. Also, variables 
ranging over words are used in proofs (something that is avoided in fork 
algebras by using only variables over relations), and reasoning in set-theory 
is carried on. 

In [D. Smith (1985); D. Smith (1987)] some strategies are presented 
which aim to help in the design of divide-and-conquer algorithms. A pro­
gram scheme describing an arbitrary divide-and-conquer algorithm is given, 
and the strategies are used for finding the adequate program pieces. No­
tice that since no complete calculus is given, then the author reasons in 
first-order logic using variables over individuals, something avoided in fork 
algebras. Also, the lack of such calculus makes the author find some of 
the missing parts using his intuition. This can be seen for example in the 
derivation of the MIN algorithm in [D. Smith (1985), pp. 45-46], where 
the Split operator and the subproblems Id and MIN are fixed by hand, and 
the Join part is derived. In our case, once the generator is fixed (something 
we believe equivalent to choosing the Split operator), the subproblems Id 
and MIN are found by unfolding/folding in fork algebras, and the Join is 
obtained in the process of satisfying the predicate DSzC. 

In [R. Bird et al. (1997)] an approach similar to ours is presented. Re­
lations are not introduced as elements in models of logical theories, but 
rather as arrows in categories known as allegories [P. Freyd et al. (1990)]. 
While in our framework the discussion in Section 7.4 shows that first-oder 
formulas over abstract relations can always be interpreted as formulas on 
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binary relations, in [R. Bird et al. (1997), p. 95] a weaker result is used that 
guarantees this 'completeness' only for Horn sentences. Horn sentences are 
formulas of the form eo A • • • A en-\ => en, where eo , . . . , en are identities 
between relational designations. Horn sentences are adequate when per­
forming equational reasoning, but fall short in describing design strategies. 
Something that also distinguishes both frameworks is the background re­
quired for mastering the process of program construction. While in the 
categorical framework a fairly non-trivial amount of category theory is re­
quired, in the fork algebraic framework only first-order logic, equational 
reasoning and basic set-theory for understanding binary relations are re­
quired. Of course, this categorical background also has clear advantages, 
such as the use of functors in the description of problems, allowing us to 
derive type-generic algorithms in a very efficient way. 
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