
Fork Algebras in
Algebra, Logic and
Computer Science

Marcelo Fabian Frias

Q

Fork Algebras in
Algebra, Logic and
Computer Science

Advances in Logic

Series Editor: Dov M Gabbay FRSC FAvH
Department of Computer Science
King's College London
Strand, London WC2R 2LS
UK
dg@dcs.kcl.ac.uk

Published

Vol. 1 Essays on Non-Classical Logic
by H. Wansing

Vol. 2 Fork Algebras in Algebra, Logic and Computer Science
by M. Frias

mailto:dg@dcs.kcl.ac.uk

Advances in Logic - Vol. 2

Fork Algebras in
Algebra, Logic and
Computer Science

Marcelo Fabian Frias
University of Buenos Aires, Argentina

V f e World Scientific
» • New Jersey •London • Singapore • New Jersey 'London • Singapore • Hong Kong

Published by

World Scientific Publishing Co. Pte. Ltd.

P O Box 128, Farrer Road, Singapore 912805

USA office: Suite IB, 1060 Main Street, River Edge, NJ 07661

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Piiblication Data
Frias, Marcelo Fabian, 1968-

Fork algebras in algebra ; logic and computer science / Marcelo Fabian Frias.
p. cm. — (Advances in logic ; v. 2)

Includes bibliographical references and index.
ISBN 9810248768 (alk. paper)
1. Computer science — Mathematics. 2. Logic, symbolic and mathematical. I. Title.

II. Series.

QA76.9.M35 F75 2002
004'.01'51"dc21 2002066193

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2002 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

Printed in Singapore by Uto-Print

to Norma, Tais and Gaston

This page is intentionally left blank

Preface

This book is the result of the research carried on by the author and some
of his colleagues from 1995. Fork algebras, the subject of this book, had
their origin in the early 90s as part of a formalism capable of dealing with
the process of program specification and development. The contents of the
book fall in with what are called Relational Methods in Computer Science.

As usually happens, applied research led to problems of a theoretical
nature which were undertaken by the author and are the core of this book.
Problems such as finite axiomatizability or axioms independence (Sections
4.1 and 4.2) naturally arose when investigating the relational semantics of
the fork calculus.

Relational proof systems for various logics (classical, modal and multi­
modal) (Sections 5.2, 6.5, 6.7) besides providing relational deductive calculi
for these logics, allow us to assess the expressive power of the fork calculus
and establish the foundations for a relational formalism for system specifi­
cation.

Finally, in Section 7.5 we present the foundations for a relational cal­
culus for program specification and derivation that allow us to specify and
calculate program design strategies.

The author wishes to thank Armando Haeberer and Roger Maddux,
who were his Ph.D. advisors and co-authors of several results in this book.
Gabriel Baum has to be thanked not only as a colleague and co-author of
several papers, but also as a constant source of friendship and advice. Tom
Maibaum suggested that these results could be put in the form of a book.
The members of the RelMiCS (Relational Methods in Computer Science)
group are thanked for their always useful comments and criticisms. Finally,

vii

VU1 Preface

the author wishes to thank the Department of Informatics, PUC-RIO; LI-
FIA, National University of La Plata; and the Department of Computer
Science, School of Sciences, University of Buenos Aires, for providing an
always stimulating environment.

Contents

Preface vii

Chapter 1 Introduction and Motivations 1
1.1 Software Specification, Binary Relations and Fork 1

Chapter 2 Algebras of Binary Relations and Relation
Algebras 5

2.1 History and Definitions 5
2.2 Arithmetical Properties 12

Chapter 3 Proper and Abstract Fork Algebras 19
3.1 On the Origin of Fork Algebras 19
3.2 Definition of the Classes 21
3.3 Arithmetical Properties 26

Chapter 4 Representability and Independence 37
4.1 Representability of Abstract Fork Algebras 38
4.2 Independence of the Axiomatization of Fork 43

Chapter 5 Interpretability of Classical First-Order Logic 49
5.1 Basic Definitions 49
5.2 Interpreting FOLE 51

Chapter 6 Algebraization of Non-Classical Logics 73
6.1 Basic Definitions and Properties 75
6.2 The Fork Logic FL 76

ix

x Contents

6.3 Modal Logics 78
6.4 Representation of Constraints in FL 80
6.5 Interpretability of Modal Logics in FL 81
6.6 A Proof Theoretical Approach 86
6.7 Interpretability of Propositional Dynamic Logic in FL 91
6.8 The Fork Logic FL' 102

6.8.1 Syntax of FL' 102
6.8.2 Semantics of FL' 102

6.9 A Rasiowa-Sikorski Calculus for FL' 104
6.9.1 The Deduction System for FL' 105
6.9.2 Soundness and Completeness of the Calculus FLC . . . 107
6.9.3 Examples of Proofs in the Calculus FLC 112

6.10 A Relational Proof System for Intuitionistic Logic 115
6.10.1 Intuitionistic Logic 115
6.10.2 Interpretability of Intuitionistic Logic in FL' 117
6.10.3 A Fork Logic Calculus for Intuitionistic Logic 121

6.10.3.1 Example 124
6.11 A Relational Proof System for Minimal Intuitionistic Logic . . 126
6.12 Relational Reasoning in Intermediate Logics 132

6.12.1 Method 1 132
6.12.2 Method 2 133
6.12.3 Method 3 137

Chapter 7 A Calculus for Program Construction 139
7.1 Introduction 139
7.2 Filters and Sets 141
7.3 The Relational Implication 143
7.4 Represent ability and Expressiveness in Program Construction . 149
7.5 A Methodology for Program Construction 150
7.6 Examples 158

7.6.1 First Example 159
7.6.1.1 Finding the Minimum Element in a List . . . 167
7.6.1.2 Finding the Minimum Common Ancestor . . . 168

7.6.2 Second Example 174
7.6.2.1 Finding the Contiguous Sublists of Maximum

Sum 184
7.6.2.2 Finding the Longest Plateau 187

7.7 A DkC Algorithm for MAXSTA 192

Contents XI

7.8 Comparison with Previous Work 203

Bibliography 207

Index 215

Chapter 1

Introduction and Motivations

1.1 Software Specification, Binary Relations and Fork

Fork algebras —the subject of this book— have their origin as the founda­
tion of a framework for software specification, verification and derivation.
In our view, specification languages —as modern graphical notations like
UML [G. Booch et al. (1998)]— must allow for a modular description of
the different aspects that comprise a system. These aspects include struc­
tural properties, dynamic properties, temporal properties, etc. Different
formalisms allow us to specify each one of these aspects, namely,

- first-order classical logic for structural properties
- propositional and first-order dynamic logic for dynamic properties,
- different modal logics for temporal properties.

Many of the previously mentioned formalisms have complete deductive
systems. Nevertheless, reasoning across formalisms may be difficult if not
impossible. A possible solution in order to solve this problem consists on
finding an amalgamating formalism satisfying at least the following:

- the formalism must be expressive enough to interpret the specifi­
cation formalisms,

- the formalism must have very simple semantics, understandable by
non mathematicians,

- the formalism must have a complete and simple deductive system.

In this book we propose the formalism called fork algebras to this end.
The formalism is presented in the form of an equational calculus, which

l

2 Introduction and Motivations

reduces reasoning to substitution of equals by equals. The calculus is com­
plete with respect to a very simple semantics in terms of algebras of binary
relations.

Algebras of binary relations, such as the ones to be used in this book,
have as domain a set of binary relations on some set (let us say A). Among
the operations that can be defined on such domain, consider the following:

- the empty binary relation 0,
- complement of a binary relation x with respect to a largest relation

E, i.e., x —as the complement of a; is denoted— is defined as E\x,
- union of binary relations —denoted by U—, and
- intersection of binary relations —denoted by ("1.

Notice that the previous operations are defined on arbitrary sets, inde­
pendently of whether these are binary relations or not. Actually, a set of
binary relations closed under these operations is an example of set Boolean
algebra. However, there are other operations that operate naturally on bi­
nary relations but are not defined on arbitrary sets. Among these we can
mention:

- the identity binary relation on A —denoted by Id—,
- composition of binary relations —denoted by o—, and
- transposition of the pairs of a binary relation —denoted by "".

Unfortunately, a class of algebras containing these operations cannot be
axiomatized by a finite number of equations [D. Monk (1964)]. In order to
overcome this important drawback, we add an extra binary operation on
relations called fork. Addition of fork has two main consequences. First, the
class of algebras obtained can be axiomatized by a finite (and small) number
of equations. Second, addition of fork induces a structure on the domain
on top of which relations are built, i.e., rather than being the arbitrary set
A, it is a set A* closed under a binary function *. The definition of the
operation fork (denoted by V) is then given by:

V £ = {{x,y*z) : xRy A xSz} .

The definition of V is depicted in Fig. 1.1. Whenever x and y are related
via R, and x and z are related via S, x and y * z are related via -RV5.
Notice that the definition strongly depends on the function *. Actually, the
definition of fork evolved around the definition of the function *. From 1990

Software Specification, Binary Relations and Fork 3

Fig. 1.1 Fork of binary relations R and 5.

(when the first class of fork algebras was introduced) until now, different
alternatives were explored with the aim of finding a framework which would
satisfy our needs. In the definition of the first class of fork algebras [P.
Veloso et al. (1991)], function * produced true set theoretical pairs, i.e.,
when applied to values a and b, *(a,b) returned the pair (a, b). Mikulas,
Sain, Simon and Nemeti showed in [S. Mikulas et al. (1992); I. Sain et
al. (1995)] that this class of fork algebras was not finitely axiomatizable.
This was done by proving that a sufficiently complex theory of natural
numbers can be interpreted in the equational theory of these fork algebras,
and thus leads to a non recursively enumerable equational theory. Other
classes of fork algebras were defined, in which * was binary tree formation
or even concatenation of sequences, but these were shown to be non finitely
axiomatizable too. It was in [M. Prias et al. (1995)a] where the class of fork
algebras to be used in this book came up. The only requirement placed on
function * was that it had to be injective. This was enough to prove in
[M. Prias et al. (1997)b] that the newly defined class of fork algebras was
indeed finitely axiomatizable by a set of equations.

This page is intentionally left blank

Chapter 2

Algebras of Binary Relations and
Relation Algebras

2.1 History and Definitions

In this section the classes of algebras of binary relations and their abstract
counterpart, the class of relation algebras, will be defined. The study of
algebras of binary relations began with the works of Charles Sanders Peirce
[Ch. Peirce (1933)] and Augustus De Morgan [A. De Morgan (1966)] and
was later continued by Ernst Schroder [E. Schroder (1895)] when looking for
an algebraic counterpart of first-order reasoning, much the same as George
Boole developed the so-called Boolean algebras as an algebraic counterpart
to propositional reasoning.

Throughout this section and the rest of the book it will be assumed
that the reader has a nodding acquaintance with elementary concepts of
set-theory and first-order logic. As a reference text in both areas the reader
is referred to [J. Barwise (1977)]. Given a binary relation X in a set A, and
a, b G A, we will denote the fact that a and b are related via the relation X
by (a, b) e X or aXb, indistinctly.

Definition 2.1 Let E be a binary relation on a set A, and let R be a set
of binary relations satisfying:

(1) [jRCE,
(2) Id (the identity relation on the set A), 0 (the empty binary relation)

and E belong to R,
(3) R is closed under set union (U), intersection (n) and complement

relative to E (~),
(4) R is closed under relational composition (denoted by o) and con-

5

6 Algebras of Binary Relations and Relation Algebras

verse (denoted by). These two operations are defined by

XoY = {{a,b) :3c{aXc A cYb)}

X={(a,b):bXa} .

Then, the structure (R, U,n,~,0,.E, o, ld^) is called an algebra of
binary relations. The class of algebras of binary relations will be denoted
by ABR.

Definition 2.2 Notice that, according to Def. 2.1, each algebra of binary
relations 21 contains a set A on which the binary relations are defined. This
set will be called the base of 21, and will be denoted by 5<a-

Definition 2.3 An algebra of binary relations is full if its universe is of
the form V (U x U) for some set U, and is square if its largest relation is
of the form U xU.

It follows immediately from Def. 2.3 that every full algebra of binary
relations is square. Also, a square algebra of binary relations, whose largest
relation is U x U, is a subalgebra of the full algebra of binary relations with
universe V (U x U).

The following theorem, besides being useful in further sections, also
gives a clear understanding of the structure of algebras of binary relations.
Given algebras 21 and 05, 21 -< 05 means that 21 is embeddable in 05, i.e.,
21 is isomorphic to a subalgebra of 05. Also, given an index set / , YliGl W-i
denotes the direct product of the algebras (2li)i6/.

Theorem 2.1 Given an algebra of binary relations 21, there exist an index
set I and full algebras of binary relations (2lj)jej such that

i&I

Proof Let E be the largest relation in 21. Since Id C E, £ C E and
EoE C E, E is an equivalence relation. Thus, there exists an index
set / such that E = \Ji€lEi, with Ei = Ui x Ui. For i £ I, let 21* be
the algebra of binary relations with largest relation Ei and universe Ai =
{x G Ei : x e A}. Let h : A —> f] i e /M D e defined by: TTi(h(a)) = a n E,.
It is an easy exercise to show that h is a one-to-one homomorphism. •

History and Definitions 7

In 1941 Alfred Tarski [A. Tarski (1941)] introduced the elementary the­
ory of binary relations (ETBR) as a logical formalization of the algebras
of binary relations. The elementary theory of binary relations is a for­
mal theory where two different sorts of variables are present. The sot
IndVar = {ui,i>2,^3, • • • } contains the so-called individual variables, and
the set RelVar = {R,S,T,...} contains the so-called relation variables.
If we add the relation constants 0, 1 and 1' to the relation variables and
close this set under the unary operators ~ and ", and the binary operators
+ , • and ;, we obtain the set of relation designations. Examples of such
objects are, for instance, R (to be read 'the converse of i?') and R;S (to
be read 'the relative product of R and S"). Atomic formulas are expres­
sions of the form xRy (where x, y are arbitrary individual variables and
R is an arbitrary relation designation) or R — S (with R and S arbitrary
relation designations). Prom the atomic formulas, we obtain compound
formulas as usual, by closing the atomic formulas under the unary logical
constants -i, Vx, \/y,..., 3a;, 3y ... (x, y,... individual variables) and the
binary logical constants V, A, =>• and •$=>. We will choose a standard set
of logical axioms and inference rules for our theory (see e.g. [H. Enderton
(1972), Ch. 2.4]). As the axioms that explain the meaning of the relational
symbols 0, 1, 1', ~, v, + , • and ;, we single out the following sentences in
which x, y, z are arbitrary individual variables and R, S, T are arbitrary
relation designations.

VzVy (x 1 y) (unit definition)

VxVy (-i xOy) (zero definition)

Vx (x V x) (reflexivity of the identity)

VxVj/V-z((xRy AyVz) =J> xRz) (identity is a congruence)

VWy (xRy & -> xRy) (complement definition)

ViVy [xRy & yRx) (converse definition)

VxVy(xR+Sy <£> xRy\/xSy) (join definition)

VxVy(xR-Sy «=> xRyAxSy) (meet definition)

VxVy(xR;Sy <=> 3z(xRz A zSy)) (relative product definition)

R = S <=> VzVj/ (xRy & xSy) (equality definition)

8 Algebras of Binary Relations and Relation Algebras

Prom the elementary theory of binary relations, Tarski [A. Tarski (1941)]
introduced the calculus of relations (CR). The calculus of relations is de­
fined as a restriction of the elementary theory of binary relations. Formulas
of the calculus of relations are those formulas of the elementary theory of
binary relations where no variables over individuals occur. As axioms of
the calculus of relations, Tarski chose a subset of formulas without vari­
ables over individuals valid in the elementary theory of binary relations.
The formulas Tarski chose as axioms are, besides a set of axioms for the
logical connectives, the following:

(1) (R = SAR = T) => S = T
(2) R = S =• (R+T = S+T A R-T = S-T)
(3) R+S = S+R A RS = SR
(4) (R+S)-T = (R-T) + (S-T) A (R-S) +T = (R+T) • (S+T)
(5) R+0 = R A i M = i?
(6) R+R = l A RR = 0
(7)T = 0

(8) h = R
(9) (R;Sy = S;R

(10) (R;S);T = R;(S;T)
(11) R;V = i?
(12) (R;S)-T = 0 => (5 ;T) -A = 0
(13) R;l = l V l;fl = l

Axioms (l)-(7) are an axiomatization for Boolean algebras, axioms (8)-
(12) axiomatize the relative operators.

As is customary in universal algebra, an algebra 21 with universe A is
simple if:

- \A\ > 2,
- 21 has exactly two homomorphic images.

It follows from [A. Tarski (1941), p. 85] that formula (13) is equivalent
to the formula

yR(R^0 => l;R;l = l) . (2.1)

It is proved in [B. Jonsson et al. (1952), Thm. 4.10(iii)] that (2.1) forces
models to be simple, and therefore so does formula (13). The models of the
calculus of relations motivate the following definition.

History and Definitions 9

Definition 2.4 A relation algebra is an algebra (A,+, - , _ ,0 ,1 , ; , ! . ' , ")
where + , • and ; are binary operations, ~~ and " are unary, and 0, 1 and 1'
are distinguished elements. Furthermore, the reduct {A,+,-,~,0,l) is a
Boolean algebra, and the following identities are satisfied for all x,y,z £ A:

x; (y;z) = (x;y) ;z, (Ax. 1)

(x+y) ;z = x;z + y;z, (Ax. 2)

(x + y)" = x + y, (Ax. 3)

x = x, (Ax. 4)

x;V = V;x — x, (Ax. 5)

(x;yY = y;x, (Ax. 6)

x;y • z = 0 iff z;y • x = 0 iff x;z • y = 0. (Ax. 7)

As an immediate consequence of Defs. 2.1 and 2.4 we obtain the follow­
ing theorem.

Theorem 2.2 Every algebra of binary relations is a relation algebra.

Proof The proof consists of showing that axioms Ax. 1-Ax. 7 hold in
any algebra of binary relations, and is left as an insightful exercise for the
reader. •

We will denote the class of all relation algebras by RA and by < the
ordering induced by the Boolean reduct. Thus, we will use the notation
x < y as a shorthand for the equation x + y = y. Elements from either
algebras of binary relations or relation algebras will be generally called

10 Algebras of Binary Relations and Relation Algebras

relations. In case it is necessary to mention elements from an algebra of
binary relations, we will call them binary relations or concrete relations.
We denote by 0' the diversity relation 1'.

Alternative (and equivalent) axiomatizations for the calculus of relations
can be obtained by replacing Ax. 7 in Def. 2.4 by any of the following two
formulas:

(x;y) -z < (x • z;y) ; (y • x;z), (2.2)

x;y < z <=> x;z < y •$=> z;y < x. (2.3)

Notice that (2.2) is an equation, and therefore the class of relation al­
gebras is a finitely based variety, i.e., it is axiomatizable by a finite set of
equations. If we add formula (13) to the axiomatization of relation alge­
bras, we obtain the class of simple relation algebras. It is proved in [L.
Chin et al. (1951)] that axioms (1)—(12) can be proved from Ax. 1-Ax. 7
and viceversa.

At the end of his paper [A. Tarski (1941)], Tarski asked the following
questions:

(1) Is every model of the calculus of relations isomorphic to an algebra
of binary relations?

(2) Is it true that every formula of the calculus of relations that is
valid in all algebras of binary relations is provable in the calculus
of relations?

(3) Is it true that every formula of the elementary theory of binary rela­
tions can be transformed into an equivalent formula of the calculus
of relations?

The answer to these questions is negative in all cases. The first question
was answered negatively by Roger Lyndon [R. Lyndon (1950); R. Lyndon
(1956)] by exhibiting a non-representable relation algebra, i.e., a relation
algebra that is not isomorphic to any algebra of binary relations. The im­
mediate consequence of this result is that there exist properties valid in
all algebras of binary relations which can be false in some relation alge­
bras. The second question was answered by Lyndon, who showed that the
equation

b • c;d • e;f < a; a\c • b;d • (a;e • b;f) ; (e;c • f;d) \d

is valid in all algebras of binary relations, but fails in the relation algebra

History and Definitions 11

presented in [R. Lyndon (1950)]. McKenzie [R. McKenzie (1970)] also an­
swered the first question by presenting a small non representable relation
algebra (Lyndon's algebra has fifty-six atoms, while McKenzie's has only
four). Notice that since Tarski proved in [A. Tarski (1955)] that the class
of representable relation algebras is a variety, i.e., it is axiomatizable with
a set of equations, there must exist an equation that fails in McKenzie's
algebra, providing a negative answer to the second question. An example
of such an equation is given in [A. Tarski et al. (1987), p. 55]. With regard
to the third question, a result due to Korselt and whose proof is included
in [L. Lowenheim (1915)] shows that the expressive power of the calculus
of relations is that of a proper restriction of first-order logic. The logical
counterpart of the calculus of relations — denoted by £ x in [A. Tarski et
al. (1987)] — is equivalent {equipollent is the technical term) with a three
variables fragment of first-order predicate logic (see [A. Tarski et al. (1987),
Ch. 3.9] for a detailed proof of this). If we recall our mission of devising a
framework suitable for system specification, such lack of expressiveness has
a negative impact since first-order specifications of systems are not likely to
have meaningful translations into the calculus of relations. In [A. Tarski et
al. (1987), §3.4(iv)] Tarski and Givant present the following formula, which
is not equivalent to any sentence of the calculus of relations:

Va;VyVz3u(uO'x A uO'y A u0' z) . (2.4)

One way to convince oneself that this is indeed the case is by attempting
to reduce this formula to a relational expression using the definitions of the
relational operations. In Ch. 2.2 we will come back to this formula.

For a more detailed study in the origin of relation algebras and the
calculus of relations the reader is referred to [R. Maddux (1998); R. Maddux
(1991)] and [C. Brink et al. (1997), Ch. 2].

In Def. 2.5 below we introduce some terminology to be used in further
sections.

Definition 2.5 A relation F is called functional if F;F < V. A relation
/ is called injective if I; I < 1'. A relation S is called symmetric if S = S.
A relation T is called transitive if T;T < T. A relation D is called left-ideal
if D = 1;D, and right-ideal if D = D;l. A relation C is called constant if
it is functional, left-ideal and C; l = 1. Intuitively, constant relations are
alike constant functions (i.e., they map all inputs to a single value). We
will generally denote the constant relation whose output is the value v by

12 Algebras of Binary Relations and Relation Algebras

Cv. By Dom (R) we denote the term (R;R)-V (the domain of the relation
R), and by Ran (R) we denote the term (R;R)- V (the range of the relation
R). Given a binary relation R, by dom (R) and ran (R) we denote the sets
{x : 3y((x,y) £ R)} and {y : 3x((x,y) e #) }, respectively. In general, we
will denote algebras and structures by capital german letters (21, 23,.. .), and
their universes by the associated roman letter (A, B,...). Given algebras
21 and 23, by 21 X 23 we denote the fact that 21 is embeddable in 23 (i.e.,
there exists a one-to-one homomorphism from 21 to 23). Given a set S, by
V (S) we denote the power set of S.

The reader is invited to verify that when interpreted in algebras of
binary relations, the conditions in Def. 2.5 characterize familiar notions.
For example, a binary relation F satisfying the condition F;F < V will in
effect be functional.

2.2 Arithmetical Properties

In this section a list of properties that are true in all relation algebras is
presented. These properties will be used in further sections. Within the
proof of Thm. 2.3, a reference to the nth property stated within the same
theorem will have the shape 'by n'.

Theorem 2.3 The following properties are valid in all relation algebras
for all relations R, S, T, F, G and I:

(1) R;0 = 0;R = 0.
(2) 1 = 1.
(3) 1;1 = 1.
(4) (R+sy = R+S.
(5) (R-Sy = R-S.
(6) IfR<V thenR = R.
(7) IfR,S< V then R;S = RS.
(8) IfR< V then (R;l) -S = R;S and (1;R) -S = S;R.
(9) IfF+G = V and F-G = Q, then F~^1 = G;1.

(10) Dom(R) = (R;l) -V and Ran(R) = (1;R) -V.
(11) Dom (R);R = R and R;Ran (R) = R.
(12) Dom (R+S) = Dom(R) +Dom(S), i.e., Dom is additive. Simi­

larly, Ran(R+S) = Ran(R) +Ran(S).

Arithmetical Properties 13

(13) Dom (R\ = Ran(R) and Ran (ft) = Dom(R).

(14) R;l=_Dom(R);l andl;R= l;Ran(R).

(15) Tl = R.
(16) (R-S) ;T < (R;T) • (S;T) and R; {S-T) < (R;S) • (R;T).
(17) IfF is afunctional relation then F; (R-S) = (F;R) • (F;S).
(18) If F is a functional relation, G < F, and Dom (G) = Dom (F)

then G = F.

(19) If F is a functional relation then Dom(F) ;F;R = F;R.
(20) If I is an injective relation then (R-S) ;I = (R',I) • (S;I)-
(21) If I is an injective relation then R;I;Ran(I) = R;I.
(22) IfF<V thenF-R • S = F;(R-S) and R;F • S = (R-S);F.

Proof

1. See [L. Chin et al. (1951)
2. See [L. Chin et al. (1951)
3. See [L. Chin et al. (1951)
4. See [L. Chin et al. (1951)
5. See [L. Chin et al. (1951)
6. See [L. Chin et al. (1951)
7. See [L. Chin et al. (1951)
8. By monotonicity and Ax. 5

Cor. 2.4.
Thm. 1.7.
Thm. 2.6.
Thm. 1.11.
Thm. 1.9.
Thms. 3.2 and 3.5.
Cor. 3.12.

Then,

R;S < R;l and R;S < V;S = S.

R;S < (R;l)-S .

also have

R;S = (R-R);S

= (R;R);S

= (R;R) \S

= R;(R;S)

> (R- S;l);(l

> (R;l)-S .

R;S)

(BA)

(by 7)

(by 6)

(by Ax. 1)

(by monotonicity)

(by (2.2))

The other case is proved similarly.

14 Algebras of Binary Relations and Relation Algebras

9. In order to prove this property, we will show that G; 1 is the complement
o f F ; l .

(F ;1) . (G;1) = 0 <̂ => F;G;1 • 1 = 0 (Ax. 7)

«=>• F ;G;1 = 0 (BA)

<=» (F - G) ; 1 = 0 (by 7)

^ 0 = 0 . (Hyp.)

We also have

F ; l + G;1 = (F + G);1 (Ax. 2)
= 1';1 (Hyp.)

= 1 . (Ax. 5)

Prom (F;1)-(G;1) = 0 and (F;1) + (G;1) = 1, we deduce FjT =
G;l .

10. We will prove that Dom(R) < (R;l) -V and Dom(R) > (i?;l) -1 '

Dom (R) = (R;ii) -V (by Def. Dom)

< (R',1) -V • (by monotonicity)

Dom (R) = (R-,R\ -V (by Def. Dom)

= ((R • l ' ; l) ; (l • # ;1 ')) -1 ' (by Ax. 5 and BA)

>(R;1)-V-V (by (2.2) and 2)

= (R;1)-V. (BA)

The proof for Ran follows in a similar way.
11. The proof follows by 10 and [G. Schmidt et al. (1993)] Prop. 2.4.2.
12.

Dom(R+S) = ((iZ+5) ;1)-1 ' (by 10)

= (R;1 + S ; l) - 1 ' (by Ax. 2)

= ((i i ; l) - l ') + ((S ; l) - l ') (BA)

= Dom (R) +Dom (S) . (by 10)

The proof for Ran follows in a similar way.

Arithmetical Properties 15

13.

Dom(fl) = (R.;R) -V

= Ran{R) .

(by Def. Dom)

(by Ax. 4)

(by Def. Ran)

The proof for Ran (R1 follows in a similar way.
14. We will show that R;l = Dom(R) ; 1 . The case with Ran is proved

analogously.

Dom(R);l> Dom(R);R;l

= R:1 .

Also,

Dom(R) ;1 = {(R;l) -V) ;1

< (R- l ' ; l) ; (l • R;V);1

< -R;l;l

= R;1 .

15. See [L. Chin et al. (1951)] Thm. 1.10.
16. By monotonicity we have

(by monotonicity)

(by 11)

(by 10)

(by (2.2) and 2)

(by monotonicity)

(by 3)

Thus,

(R-T);S < R;S and (R-T) ;S < T;S

(R-T);S < (R;S)-(T;S) .

17. See [L. Chin et al. (1951)] Thm. 4.2.
18. See [G. Schmidt et al. (1993)] Prop. 4.2.2 (iv).
19. In order to prove this result we will use the following property of

Boolean algebras. Let R, S and T be arbitrary, then

R-S = 0 and R+S = T implies R = T-S and S = T-R . (2.5)

We will begin by proving that the hypothesis of (2.5) are satisfied

16 Algebras of Binary Relations and Relation Algebras

for suitable instantiations of R, S and T.

F;R- F;R = F;(R-R) (by 17)

= F;0 (by BA)

= 0 . (by 1)

F;R + F;R = F; (R+R) (by Ax. 2)

= F;1 (byBA)

= Dom(F);l. (by 14)

Then, once the hypothesis that allow the application of (2.5) has
been established, we proceed as follows:

Dom(F);F;R = Dom(F);l • F;R (by 8)

= F;R. (by (2.5))

20. The rationale of most proofs involving injective relations consists of
transforming the original property to a related property of func­
tional relations. This property is usually obtained by applying the
converse operator twice to some expression, which yields an ex­
pression equivalent to the original one. Once this new property has
been stated, known properties of functional relations are used.
For this specific case, since I is an injective relation, / is functional.
Then,

(R.S);I=m-S);I)T

= (l;(R.Syy

=& MY
= id1*) • MY
= (/;£)-•(/;£)"

= (R;I) • (S;l)

= (R;I)-(S;I).

(by Ax. 4)

(by Ax. 6)

(by 5)

(by 17)

(by 5)

(by Ax. 6)

(by Ax. 4)

Arithmetical Properties 17

21.

(R;iyy

R;I;Ran(I) = ((R; I; Ran (/))")"

= ((Ran (I))'

= ((Ran (I))'

= ((Ran (I))'

= ((Ran (I))"

I;Ry

= R;I;((Ran(I))y

= R~;I;Ran(I)

= R;I.

22. Since F < V, F is a functional relation. Then, F; (R-S) = F;R • F;S.
By monotonicity,

(by Ax.

(by Ax.

4)

6)

(by 15)

(by Ax. 6)

(by 19)

(by 15)

(by Ax.

(by Ax.

(by

6)

4)

11)

F;R • S<F;R.

Also,

F;R • S<F;1 • S

= F;S .

Then,

F;R • S<F;S .

Thus, by (2.6), (2.7) and BA,

F;R • S<F;R • F;S .

On the other hand,

F;R • F;S<F;R • V ;S

= F;R • S .

(2.6)

(by monotonicity)

(by 8)

(2.7)

(2.8)

(by monotonicity)

(by Ax. 5)

Then,

F;R • F;S<F;R • S (2.9)

18 Algebras of Binary Relations and Relation Algebras

Joining (2.8) and (2.9),

F;R • F;S = F;R • S .

The case when F appears on the right hand side is proved analo­
gously.

As a source for additional arithmetical properties of relation algebras, we
direct the reader to any of [L. Chin et al. (1951); G. Schmidt et al. (1993);
A. Tarski (1941)].

Chapter 3

Proper and Abstract Fork Algebras

3.1 On the Origin of Fork Algebras

Let us recall formula (2.4):

VxVyVzBuiuO'x A uO'y A uO'z).

We have already mentioned in a previous chapter that it is not equivalent
to any sentence of the calculus of relations. In order to overcome this
limitation, it seems enough to have some operator V and a binary function
• satisfying the following equivalence:

uRx A uRy <s=> uRVR*(x,y) . (3.1)

Under these conditions we can proceed as follows:

VxVyVz3u (ttO'x A uO'y A uO'z)
<=• {by (3.1)}

VxVyizlu{uVx A uO'VO'* (y, z))
{bydef. of"}

VajVj/VzBtifzO'u A uO' VO' * (y,z))

{bydef. of ; }

VrrVyVz (xW; (0' VO') • (y, z))

{ by elementary logic }

VxVyVz (z0 ' ; (0' VO') * (y, z) <=> true)

19

20 Proper and Abstract Fork Algebras

<̂ => { by def. of 1}

VxVyVzfzO'; (0 'V0 ')*(y ,z) <=» xly A xlz)

= {by (3.1)}

VxVy\/z(xti';(0'V0')*(y,z) <^> z l V l *(j/ ,z))
<̂ => {[by def. of =1}

0' ;(0 'V0') = 1V1 .

Even though intuitively clear, the framed justification above needs an
extra assumption, namely, that all elements that can appear in the range

are indeed of the form *(fl, 6), for suitable a and b. Thus, we define
the operator V (called fork) by the following formula from the elementary
theory of binary relations:

VxVy(xRVSy <=> 3u3v (y = *(u, v) A xRu A xSv)). (3.2)

The development of the classes of proper and abstract fork algebras (to
be introduced in Section 3.2) evolved around the meaning of the notation
*(x,y). The study on fork algebras begun in [A. Haeberer et al. (1991)]
when looking for a framework adequate as the foundation of a calculus for
system specification, construction and verification. There, fork algebras
are built using finite trees, i.e., the notation *(x,y) meant the tree with
subtrees x and y. In [P. Veloso et al. (1991)], the definition is changed and
finite strings are used instead of trees (the notation *(x, y) then meant the
concatenation of strings x and y). Thus, the base of a fork algebra changed
from a free groupoid to a free monoid. In [P. Veloso et al. (1992)], the base
set is once again made out of finite trees. In all the previously mentioned
articles, no axiomatization of the class of abstract fork algebras is given,
but rather some valid properties are stated (an incomplete set of properties
in every case). It was proved by Mikulas, Sain and Simon [S. Mikulas et al.
(1992)] that the class of ABR extended with an operator V denned as in
(3.2) with *(x, y) being either concatenation or binary tree formation is not
finitely axiomatizable. It is in [A. Haeberer et al. (1993)a] and its published
version [A. Haeberer et al. (1993)b] where the current axiomatization for
abstract fork algebras is first used, since the version presented in [P. Veloso
et al. (1993)] had an extra non-equational axiom necessary in order to
achieve representability. On the other hand, [P. Veloso et al. (1993)] use
the current definition of proper fork algebras (with *(x,y) denoting the
application of a binary injective mapping to x and y), while [A. Haeberer

Definition of the Classes 21

et al. (1993)a] and [A. Haeberer et al. (1993)b] still resort to finite trees.
In order to complete the definition of fork given in (3.2), we will request

* to be an injective mapping, i.e., it must satisfy the sentence:

VrrVyVuVu (*(x, y) = *(u, v) =>• x = u A y = v) . (3.3)

In the following sections we get into the technical details in order to
define the classes of proper (also called standard) fork algebras and abstract
fork algebras.

3.2 Definition of the Classes

The class of proper fork algebras (PFA for short) is the extension of the
class of algebras of binary relations [B. Jonsson et al. (1952); A. Tarski
(1941)] with fork. The operator fork induces a structure on the base of
proper fork algebras. The objects, instead of being binary relations on a
plain set, are binary relations on a structured domain (^4, *) , where * is,
by (3.3), an injective binary function on A.

Definition 3.1 A star proper fork algebra is a two-sorted algebraic struc­
ture (R , U, U, n, ~, 0, E, o, Id,"" , V, *) with domains R and U, such that:

(1) {R,U,n,~,Q,E, o:Id,"~") is an algebra of binary relations on the
set U,

(2) * :UxU —> U isa. binary function that is injective on the restriction
of its domain to E,

(3) R is closed under fork of binary relations, defined by:

SVT={(x,*(y,z)) :xSy A xTz} .

A graphical interpretation of V is given in Fig. 3.1. Notice that in
Fig. 3.1, in order to picture the fork of relations R and S, we use a two-
dimensional notation. Such notation will be used intensively throughout the
book in order to obtain shorter and (hopefully) more readable expressions.

In Def. 3.1(2), notice that E is a binary relation on U, and therefore the
restriction of U x U to E is adequate. Proper fork algebras are obtained
as reducts (some operations and domains are forgotten) of star proper fork
algebras.

22 Proper and Abstract Fork Algebras

jW £ R(x)

/ *
x V

\

\ ,

*

eS(x)

Fig. 3.1 The operator fork.

Definition 3.2 We define the class of proper fork algebras (denoted by
PFA) as Rd*PFA, where the operation R d takes reducts to the similarity
type (U,n ,~ ,0 , l7x U, o,Id~ , V).

Notice that proper fork algebras are obtained from star proper fork
algebras by forgetting the domain U and the function *.

Definition 3.3 A proper fork algebra is full if its universe is of the form
V (U x U) for some set U, and is square if its largest relation is of the form
UxU.

It follows immediately from Def. 3.3 that every full proper fork algebra
is square, and a square proper fork algebra whose largest relation is U x U
is a subalgebra of the full proper fork algebra with universe V (U x U). We
will denote the class of full proper fork algebras by FullPFA and the class
of square proper fork algebras by SPFA.

Theo rem 3.1 Given a proper fork algebra 21, there exist an index set I
and full proper fork algebras (2lj)je/ such that

iei

Proof Follow the lines of the proof of Thm. 2.1 and prove that h is a
one-to-one fork algebra homomorphism. •

In Def. 3.1 the function * performs the role of pairing, encoding pairs
of objects into single objects. It is important to notice that there are *
functions which are distinct from set-theoretical pair formation, i.e., *(x, y)
differs from { x, { x, y } }.

Notice that in order to define a FullPFA 21, it suffices to provide the set
B<n and an injective mapping * : B<& x B<& —> B&-

Definition of the Classes 23

Given a PFA 21 with base B&, it is possible to single out those elements
that do not represent pairs (if there are any). Notice that the term 1VI
stands for the binary relation

{ (x, y) : x G B a A Vu, v <= 5 a (y + *(u, v)) } .

Thus, the term Ran (1V1) distinguishes those elements from the base that
are not pairs. In what follows we will denote by 1' M the term Ran (1V1),
by lu the term l ; i 'u and by M1 the term l 'u; l- We will call the elements
from the base in the domain of I'M urelements, and will denote the set of
urelements of a fork algebra 21 by Urel<&.

Under the previous definitions, the equation

i ; i ' u ; i = l (3-4)

is valid in a proper fork algebra 21 only in case Urel^ is nonempty. We will
denote by PFAU the subclass of proper fork algebras with a nonempty set
of urelements (i.e., satisfying (3.4)). Also, we denote by SPFAU the class of
square proper fork algebras with urelements.

In the proof of several theorems to come, it will be necessary to explic­
itly construct proper fork algebras. By the 'full fork algebra with set of
urelements U', we mean the following construction:

(1) Construct the absolutely free groupoid (U*, *) with set of genera­
tors U

(2) Construct the full fork algebra on the set U*, the operation V being
defined by the condition RV_S = { {x, *(y, x)) : xRy and xSz }

As a particular instance of the application of the operator fork, we have
the relation IdV_Id. When this relation is interpreted in a proper fork
algebra, it produces two copies of a given input element. Fig. 3.2 illustrates
its definition. This relation will be denoted by 2.

Given a pair of binary relations, the operation called cross (and denoted
by <g>) performs a kind of parallel product. A graphic representation of cross
is given in Fig. 3.3. Its set theoretical definition is given by

i?(g)5= {(*(x,y),*(w,z)) : xRw AySz}.

It is not difficult to check that cross is definable from the other relational
operators with the use of fork. It is a simple exercise to show that if V is

24 Proper and Abstract Fork Algebras

Fig. 3.2 The relation 2.

•R >-w e R(x) x—

* ® *

y S -z e S(y)

Fig. 3.3 The operator cross.

the greatest relation in a proper fork algebra, then

R® S = {(IdV_V)~oR)V((VV.Id)-oS).

Much the same as relation algebras are an abstract version of algebras
of binary relations, proper fork algebras also have their abstract counter­
part, the class of abstract fork algebras (AFA). As we will see in the next
definition, the class of abstract fork algebras can be axiomatized with a
finite set of equations, and therefore is a finitely based variety.

Definition 3.4 An abstract fork algebra is an algebraic structure

(i ? , + , - , - , 0 , l , ; , 1 V , V) ,

where (R, +, •, ~, 0,1, ;, 1',") is a relation algebra and for all r, s,t,q £ R,

rVs = (r; (1'VI)) • (s; (1V1')), (Ax. 8)

(r V *) ; (t V g r = (r ; t) •(*;$), (Ax. 9)

Definition of the Classes 25

(1 ' V 1) U V (1 V 1 T < 1 ' . (Ax. 10)

The class of simple abstract fork algebras (SAFA) contains those ab­
stract fork algebras satisfying formula (2.1). Those abstract fork algebras
that satisfy (3.4) are said to have urelements, and their class is denoted
by AFAU. The class of simple abstract fork algebras with urelements is
denoted by SAFAU. AtFAU denotes the class of atomic fork algebras with
urelements (i.e., fork algebras with urelements whose Boolean reduct is
an atomic Boolean algebra), and AtSFAU denotes the class of atomic and
simple fork algebras with urelements.

Prom the abstract definition of fork induced by the axioms in Def. 3.4,
it is possible to define cross by the equation

R®S = ((!' V1)U;J2) V ((1V1')U;S) (3.5)

When interpreted in a proper fork algebra, the relations (l ' V l) " and
(1V1')U behave as projections (they are actually called quasi-projections),
projecting components from pairs constructed with an injective function
*. We call them it and p respectively. They will allow us to cope in
further sections with the lack of variables over individuals in the language of
abstract fork algebras. Figure 3.4 illustrates the meaning of these relations.

\ * V z

, /

" \
* V

>

Fig. 3.4 The projections 7r and p.

Notice that under the previous definitions of 7r and p, (3.5) can be spelt
in a simpler form as follows:

R®S=(n;R)V(p;S) .

26 Proper and Abstract Fork Algebras

3.3 Arithmetical Properties

Theorem 3.2 The following properties hold in all fork algebras for all
relations F, I, R, S, T and U.

(1) (RVS);2 = R-S.
(2) (RVS) ;TT = Dom(S) ;R and (RVS) ;p = Dom(R) ;S.
(3) R; (SVT) < (R;S) V (R;T).
(4) Let F be functional, then F; (RVS) = (F;R)V (F;S).
(5) IfF<V then (F;R)VS = F; {RVS).
(6) (RVS) • (TVU) = (R-T) V (S-U).
(7) (R®Sy = R®S.
(8) (R®S) • (T®U) = (R-T) ® (S-U).
(9) (RVS) ; (T®U) = (R-T) V (S;U).

(10) (R®S) • (T®U) = (R;T) ® (S;U).
(11) (R+S)®T = (R®T) + (S®T), i.e., <g> is additive. Similarly,

R®(S+T) = (R®S) + (R®T).
(12) (R®V);TT = TT;R and (V®R) ;p = p;R.

(13) The relations n and p are functional.
(14) #;p = l.
(15) Dom(TT) = Dom(p) = V ®V.
(16) Dom (TT;R) = Dom (R) ®V and Dom (p;R) = V®Dom (R).

(17) (R®V);2 = Dom((V ®R) ;2) ;p.
(18) Let F be functional, then vf • 1; (1' VF) = V VF.

(19) If I is injective, then (V ® R;I) ;2 = Dom ((I®R);2J ;n and

(R;I ® V) ;2 = Dom ((R®I);2^) ;p.

(20) (V®V) ;R~®S; (V®V) = (R®l) + (l®S).

Proof

1. If we recall that 2 equals 1' VI ' , then the property follows immediately

applying Ax. 9.
2. We will prove the first property, namely, that

(RVS);ir = Dom(S);R.

Arithmetical Properties 27

We then proceed as follows.

(RVS) ;?r = (RVS) ;(1' VI)" (by Def. jr)

= R;V • S;l (by Ax. 9)

= fl • 5;1 (by Thms. 2.3.6 and 2.3.2)

= # • Z>om (S) ; 1 (by Thm. 2.3.14)

= Dam (S) ; # . (by Thm. 2.3.8)

The case with p follows in a similar way.

R;(SVT) = R;(S;TT • T;p) (by Ax. 8)

< (R;S;n) • (R;T;p) (by Thm. 2.3.16)

= (R;S)V(R;T). (by Ax. 8)

F; (RVS) = F; (R;n • S;p) (by Ax. 8)

= (F;R;TT)-(F;S;P) (by Thm. 2.3.17)

= (F;R)V(F;S). (by Ax. 8)

F;RW S = F;R;TT • S;p (by Ax. 8)

= F; (R\TC • S;p) (by Thm. 2.3.22)

= F;(RVS). (by Ax. 8)

{RVS) • (TV 17) = R;# • S;p • T;TT • U;p (by Ax. 8)

= R\ii • T;TT • S;p • U;p (by BA)

= {R-T) ;n • {S-U) ;p (by Thm. 2.3.20)

= (R-T) V (S-U). (by Ax. 8)

Proper and Abstract Fork Algebras

(R®Sy=(n;R V p;Sy (by (3.5))

= (7r;R;7t • p;S;pY (by Ax. 8)

= (n;R;Try-{p;S;py (by Thm. 2.3.5)

= TT;R;% • p;S;p (by Ax. 6)

= Tr;R;Tt • p;S;p (by Ax. 4)

= (jr;R) V (p;S) (by Ax. 8)

= R®S. (by (3.5))

(R®S) • (T®U) = ((ir;R) V (p;S)) • ((TTJT) V (p;U)) (by (3.5))

= n;R;TT • p;S;p • TT;T;TT • p;U;p (by Ax. 8)

= 7r;(R-T);7t • p;(S-U);p
(by Thms. 2.3.17, 2.3.20)

= (*;(R-T))V(p;{S-U)) (by Ax. 8)

= (R-T)®(S-U). (by (3.5))

(i?V5) ; (T®U) = (RVS) ;((T®Uyy (by Ax. 4)

= (RVS);(f®(jy (by 7)

= (i?V5);(7r;f V p;tjy (by (3.5))

= (i? ; (7r ; f r) • (S;(p;Uy) (by Ax. 9)

= (i?;T;7f) • (S;U;p) (by Ax. 4, Ax. 6)

= {R;T)V{S;U). (by Ax. 8)

(fl®S) ; (T®U) = ((7r;i2) V (p;5)) ; (7 W) (by (3.5))

= (n;R;T)V(p;S;U) (by 9)

= (i2;T)®(S;17). (by (3.5))

Arithmetical Properties 29

11.

(R+S) ®T = (TT; (R+S)) V (p;T) (by (3.5))

= ir;(R+S);# • p;T;p (by Ax. 8)

= {Tr;R;7t+ TT;S;TT) • p;T;p (by Ax. 2)

= (n;R;n • p;T;p) + (TTJS;* • p;T;p) (BA)

= {(ir;R) V (p;T)) + ((7r;5) V (p;T)) (by Ax. 8)

= (i J®r) + (5®T) . (by (3.5))

The other case follows in a similar way.
12.

13.

(R&V) ;ir = fcR V p) ;vr

= (7r;i2 V / o) ; (l ' V i r

= rr;R;V • p;l

= TT;R.

The case with p follows in a similar way.

7f;7r = ((rvi)T;(rvir

(by (3.5))

(by Def. TT)

(by Ax. 9)

(by Thm. 2.3.16)

(by Def. n)

= (l 'Vl) ;(l 'Vir
= 1';1' • 1;1

= 1';1' • 1;1

= 1'-1

= r.

(by Ax. 4)

(by Ax. 9)

(by Thms. 2.3.6 and 2.3.2)

(by Ax. 5 and Thm. 2.3.3)

(by BA)

14.
The proof for p is analogous.

#;p = ((i 'Vi)T; (iv iT
= (1'V1);(1V1T
= (l ' ; l) . (l ; r)
= (1' ;1).(1;1')

= 1-1

= 1.

(by Defs. n and p)

(by Ax. 4)

(by Ax. 9)

(by Thms. 2.3.2 and 2.3.6)

(by Ax. 5)

(by BA)

30 Proper and Abstract Fork Algebras

15. In order to show that Dam {it) = l'<g>l' we will show that 7r;l =

(1 '®1') ;1.

<) 7r;l = (l 'O l ') ; 7r;l (by 9)

< (1' <g> 1') ; 1; 1 (by monotonicity)

= (1'<8>1');1. (by Thm. 2.3.3)

>) ir;l = TT;1;1 (by Thm. 2.3.3)

= (TT;1 • 1);1 (byBA)

> (7r;7r • p;p) ;1 (by monotonicity)

= (l ' ® i ') ; l . (by (3.5))

The proof for p is analogous.
16.

Dom(ir;R) = (n;R;l) -V (by Thm. 2.3.10)

= (IT;Dam (R) ;1) -1' (by Thm. 2.3.14)

< (Tr;Dom(R) • l ' ; l)

; (1 • Dom{R)-TT-V) (by (2.2))

= ir;Dom (R) ;Dom (R) ;7r (by Ax. 5 and BA)

= IT ; {Dam (R) • Dam (R)) ;% (by Thm. 2.3.7)

= ir;Dom(R) ;w. (BA)

Also,

Thus,

Dom(ir;R) = (TT;R;1) -V (by Thm. 2.3.10)

< (7r;l) -1' (by monotonicity)

= Dam (TT) (by Thm. 2.3.10)

= Dom (p) (by 15)

= (p;p)-V (by Def. Dom)

< p ; p . (by monotonicity)

Dom(Tr;R) < (ix;Dom{R) ;n) • (p;p) = Dom(R) ®1' .

Arithmetical Properties 31

Let us show now the other inclusion. First, let us note that

Dom(R) ®V = n;Dom(R) V p (by (3.5))

= ir;Dom(R) ;TT • p;p (by Ax. 8)

< n; Dom (R) ;1 (by monotonicity)

= Tt;R;l. (by Thm. 2.3.14)

Second, note that by monotonicity Dom (R) ® 1' < 1' ® 1', and
since by Ax. 10, 1' <g> 1' < 1', by transitivity Dom (R) ® 1' < 1'.
Thus,

Dom(R)®Y < (ir;R;l)-V =Dom(ir;R).

17. First, note that

(£<8>1') ;2 = IT;R • p (by (3.5) and Ax. 9)

< ((TT . p ; f l) ; (A - # ; p)) - p (by (2.2))

= ((7 r - p ; f l) ; (i i - l)) - p (by 14)

< ((TT • p;R) ;1) -p (by monotonicity)

= (£>om(7r • p;R) ;1) -p (by Thm. 2.3.14)

= Dom (TT • p;R)\p (by Thm. 2.3.8)

= Z)om((7r V p;R);2) ;p (by Ax. 9)

= Dom((V®R);$);p. (by (3.5))

In order to prove the equality we will reason as follows. First, note
that the relation Dom ((V<g>R);2) ;p is functional. Since we have
already shown that (_R®l');i> < Dom ((1' ®R);2) ;p, by Thm.
2.3.18 it suffices to show that

Dom((R®V);%) > Dom{{V®R);2)

32 Proper and Abstract Fork Algebras

We proceed as follows.

Dom ((R®V);'2\ = Dom (h;;R V p);~2\ (by (3.5))

= Dom ((TT ; R • p)) (by Ax. 9 and Ax. 4)

= Dom (i(ir;RY • p)") (by Thm. 2.3.5)

= Dom ((# ; # • pY) (by Ax. 6 and Ax. 4)

= Dom ((iZVl 'D (by Ax. 8)

= Ran (RW). (by Def. Dom)

We also have

Dom((V®R);2) = Dom ((TT V p\R)\2) (by (3.5))

= Dom (((TT • p\R)y) (by Ax. 9 and Ax. 4)
= Dom((% • (p;RYY) (by T h m - 2.3.5)

= Dom ((it • R;pY) (by Ax. 6)

= Dom ((V VR)") (by Ax. 8)

= Ran(VVR). (by Def. Dom)

We will finally show that Ran (RW) > Ran(V VR).

Ran(RVV) = (l ; (i?Vl ')) -1' (by Thm. 2.3.10)

= (l;(R;n • p))-V (by Ax. 8)

> (l;R; (R;TT • p)j -V (by monotonicity)

= (l ; (£ - l) ; (f l ; * • p)) -V (BA)

= (l ; (A . (# ; p)) ; (f l ; * - $) - l ' (by 14)

> (l ; (n • £ ; p)) -V (by (2.2))

= (l ; (l ' V #)) - l ' (by Ax. 8)

= iton (l ' V R \ . (by Thm. 2.3.10)

Arithmetical Properties 33

18. In order to prove the equality we will prove both inclusions.

n • 1;(1 'VF)

> (V VI) • 1'; (1' VF) (by Def. TT and monotonicity)

= (l ' V l) - (r V F) (by Ax. 5)

= (1'-1' V 1-F) (by 6)

= 1'VF. (by BA)

TT • 1;(1 'VF)

< (1 - (i ' V l) ; (l ' V F r) ; (l ' V F - (1;(1'V1))) (by (2.2))

= (1' V1) ; (1' VF)"; (V VF • (1; (1' V1))) (by BA)

= (1' VI) ; (1' VF)"; (V V F) (by monotonicity)

= (l ' - 1 ; F) ; (1 ' V F) (by Ax. 9)

= (v • 1;FV; (V VF) (by Thm. 2.3.6)

= (v • (l ; -F)u) ; (1 'VF) (by Thm. 2.3.5)

= (v • P]l) ; (1' V F) (by Thm. 2.3.6 and Ax. 6)

= (1' • F ; l) ; (1 'VF) (by Thm. 2.3.2 and Ax. 4)

= Dom(F);(VVF) (by Thm. 2.3.10)

= Dom (F) V Dom (F) ;F (by 4)

= Dom (F) V F (by Thm. 2.3.11)

= 1' VF. (by 5)

19. Since the proofs of both properties are analogous, we will focus on
the first one. In order to prove the equality we will prove both
inclusions. Note first that by Thms. 2.3.8 and 2.3.14,

Dom ({I'<g>R);l) ;TT= (I®R);2;1 • n .

(V® R;I);2=ir • p;R;I (by (3.5) and 1)

< TT- (by BA)

Proper and Abstract Fork Algebras

Also,

(1'® R;I);2

= TT • p;R;I (by (3.5) and 1)

= 7T • p;R;I;Ran (I) (by Thm. 2.3.11)

= it;Ran (I) • p;R;I (by Thms. 2.3.22 and 2.3.20)

= n;(I;I • V) • p;R;I (by Def. Dom)

<7r;7;7 • p;R;I (by monotonicity)

= (TT;/ • p;R);I (by Thm. 2.3.20)

< (ir;I • p\R);l (by monotonicity)

= (I®R);2;l. (by (3.5) and 1)

Thus,

(l'<g> R;I) ;2 < Dom ((l®R) ;2\ ;TT .

Let us now prove the other inclusion. For this, note that by (3.5)
and 1,

(1' ® R;I) ;2 = n • p;R;I .

Then,

Dom M/ig) .Rj; iM;7r<r;7r (by monotonicity)

= n. (by Ax. 5)

Also,

Dom{(I®R);2);-K

= Dom(ir;I • p;R);ir (by (3.5) and 1)

= (((T T ; / • p;R);{-K;I • p;fl)u) -1') ;TT (by Def. Dom)

= (((T T ; / • p;R);(I;n • R;p)) -1') ;TT

(by Thm. 2.3.5 and Ax. 6)

< p; R; I; TT ; 7r (by monotonicity)

<p;R;I;V (by 13)

= p;i2;7. (by Ax. 5)

Arithmetical Properties 35

Thus,

Dom((l®R\ ;S) ; T T < (1 ' ® R;I);2.

20.

(r®r);E®3;(l '®l')
= (1'®1') ;7r;jR;7f • /ojSj/S; (1'®1') (by (3.5) and Ax. 8)

= (l '®l ') ;(^Ri¥ + ^ 5 ^) ; (l ' ® l ') (byBA)

= (r®i ') ;^Ri¥;(r®i ')
+ (1 ' ® 1 ') ; ^ # (1 ' ® 1 ') (byAx.2)

= TTJSJTT + p{S;p (by 15 and Thms. 2.3.19, 2.3.21)

= (n;R;7t • l) + (l • p;S;p) (by BA)

= (jr;R;n • Dom(Tr) ;l;Dom(Tr))

+ (Dom(p);l;Dom(p) • p{S;p) (by Thm. 2.3.22)

= (jr;R;iT • Dom(p) ;l;Dom(p))

+ (Dom(ir);l;Dom(n) • p;S;p) (by 15)

= (TTJIJTT • p;l;p) + (ir;l;n • p-j5;p) (by Thm. 2.3.14)

= (B®1) + (1®5) . (by (3.5) and Ax. 8)

D

This page is intentionally left blank

Chapter 4

Representability and Independence

Abstract fork algebras arose in the search for an abstract formalism suit­
able for systems specification and verification. As we will see in further
chapters, their expressive power allows us to cope with different specifica­
tion formalisms. Also, the calculus of abstract fork algebras with its simple
equational rules allows non experts to understand and use the calculus.
If specifications are to be written as formulas in the language of abstract
fork algebras, we need an easily understandable semantics for these speci­
fications. Obvious candidates are the abstract fork algebras, but it is not
at all clear what these algebras look like. Better candidates to play this
role are the proper fork algebras. They are particularly adequate because
their universe made of binary relations and their simple operators can be
understood even by non mathematicians. The previous remarks show that
it is important to determine the relationship between proper and abstract
fork algebras. The ideal situation would be for proper and abstract fork
algebras to be the same thing. Since abstract fork algebras are models of
a set of equations, the class is closed under isomorphisms, and therefore,
the best we can expect is for abstract fork algebras to be isomorphic to
proper ones. This is known as the representability problem for abstract
fork algebras. The solution to this problem was obtained independently by
Prias-Haeberer-Veloso [M. Prias et al. (1997)b] and by Gyuris [V. Gyuris
(1995)]. In Section 4.1, and using as a central result a theorem due to
Tarski [A. Tarski (1953)] on the representability of quasi-projective rela­
tion algebras (and generalized by Maddux in [R. Maddux (1978)]), we will
present the representability theorem for abstract fork algebras.

As a corollary of the representability theorem, the axioms for abstract

37

38 Representability and Independence

fork algebras provide a finite (and equational) axiomatization for proper
fork algebras. In Section 4.2 we prove the independence of these axioms
(i.e., we prove that none of the axioms can be deleted from the axiomati­
zation) .

4.1 Representability of Abstract Fork Algebras

Definition 4.1 We define the class of representable fork algebras as
IPFA, the closure under isomorphism of proper fork algebras.

The class of representable fork algebras will be denoted by RFA.
In the next lemma we prove that relations n and p are a pair of quasi-

projections as defined in [A. Tarski et al. (1987), p. 96].

Lemma 4.1 The relations ir and p are functional. Moreover, the equation
n;p = 1 holds in every abstract fork algebra.

Proof By Thms. 3.2.13 and 3.2.14. •

Relation algebras with projection elements have been widely studied.
In [A. Tarski et al. (1987)], relation algebras having functional elements
A and B satisfying A;B = 1 are called quasi-projective relation algebras
by Tarski and Givant, and Maddux [R. Maddux (1989)] calls structures
(9^, A, B) (9t a relation algebra), pairing relation algebras. Prom Lemma
4.1 we immediately obtain the following corollary.

Corollary 4.1 The relation algebra reduct of any abstract fork algebra
is a quasi-projective relation algebra. Moreover, if we call 9̂ the relation
algebra reduct of a given abstract fork algebra, then any structure (9^, 7T, />)
is a pairing relation algebra.

As the next step we will prove that the axioms characterizing abstract
fork algebras are satisfied in any proper fork algebra, thus establishing that
RFA C AFA.

Theorem 4.1 RFA C AFA.

Proof By Thm. 3.1, PFA = ISPFullPFA. Since the axioms of AFA are
equations and equations are preserved under I (isomorphisms), S (subal-
gebras) and P (products), it suffices to show that for every 21 € FullPFA,
21 satisfies axioms Ax. 1-Ax. 10. Therefore, for the remaining part of this

Representability of Abstract Fork Algebras 39

theorem, let 21 6 FullPFA. Notice that the reduct of 21 to the similarity
type (U, fl, ~, 0, U x U, o, Id,^) is an algebra of binary relations, thus sat­
isfying Ax. 1-Ax. 7 characterizing RA. To shorten notation we will denote
the relation U x U by V.

In order to show that Ax. 8 holds in 21, we will prove that for any binary
relations R,SeA, RV_S = (Ro (Jtf V V)) n (So (VVId)).

xRVSy
<s=^ { by def. V }

3u,v (xRu A xSv Ay = *(u, v))
{ by def. Id and V }
3u, v(xRu A uldu A uVv A xSv A i;Vu A u/cfr; Ay = *(u, v))
{ by def. V }
3u, v (xRu A uIdW_Vy A xSv AvVV_Idy)
{ elementary logic }
3u (xRu A uldVVy) A 3v {xSv AvVV_Idy)

4=> { by def. o }
xRo (IdVV)y A xSo (VVId)y

<=> { by def. n }
x(Ro (Id%V)) n (So (VV_Id))y .

In order to prove that Ax. 9 holds in 21, we will prove that for any binary

relations R, S, T and Q, (RVS) o(TV_Q)~ = (R° T) n (So Q).

x(RVS)o(TVQrv
{ by def. o }
3u (xRV.Su A u(TVQ)~i /)
{by def. -}
3u(xRV_SuAyTV_Qu)
{ by def. V }
3u, V\,V2, W\,W2(xRv\ A xSw\ A U = *(v\,w{)

A yTv2 AyQw2 Au = *(u2,w^))
{by * injective}
3v, w (xRv A xSw A yTv A yQw)
{ by elementary logic and def. "" }

3v,w (xRv AvTy AxSw AwQy)

{ by def. o }

xRoTyAxSoQy

{ by def. n }

x(RoT)n(So Q)y .

http://xRV.Su

40 Representability and Independence

Regarding Ax. 10, in order to show that it holds in 21, we will show that

(W W) ~ V (^ V W) ~ £ Id .

=> { by def. V }
3u,v(x(IdV.V)^u A x(V^Id)^v Ay = *(u, v))

=* {by def. -}
3u, v{uIdVVx A vVV_Idx A y = *(u, t;))

=> {by def. V }
3u, v, u', v'(uldu' A vldv' Ax = *(u', v') Ay = *(u, v))

=• { by def. Id }
3u,w,u',v'(u = u'Av = v'Ax = *(U',V') Ay = *(u,v))

=£• {by * function}
x = y . D

Lemma 4.2 Consider 21 G SAFA with relation algebra reduct 21'. Given
a relation algebra homomorphism h : 21' —• 25 into a square algebra of
binary relations 25, there exists an expansion of 05 to 05* G SPFA so that
h : 21 —> 05* is a /orfc algebra homomorphism.

Proof The algebra 05 consists of relations on a set U, with largest element
V = UxU.

Since the quasi-projections Tr,p £ A', h (n) ,h(p) £ B.
By Lemma 4.1, 21' satisfies:

7 r ; p = l , 7 r ; 7 T < r , p;p < V

Thus,

(h(Tr)roh{p) = h(l) = V,

h (TT) is a functional binary relation,

h (p) is a functional binary relation.

We define the relation FC\(UxU)xUby

((a,b),c)£F «=> (c,a)Gh(n) and (c,b)eh(p) .

(1) F = Z)om(F).
Given (a, b) G V, since V C (h (n))*" oh (p) there exists c£U such
that (a,c) G (/J(TT))~ and (c,6) G h(p). Thus, ((a,6) ,c> G F .

Representability of Abstract Fork Algebras 41

(2) F is functional on V.
Let ((a,b) ,x),((a,b),y) G F. Then (x,a) € /i(7r), (x,b) G fc(p),
(y,a) G h(n) and (y,6) G ft(p).
Thus, (x,y)e(h(IT) o(h(ir)r)n(h(p)o(h{p)r).
But, by Ax. 8 and Ax. 10 in Def. 3.4, 21' satisfies (TT;TT) • (p;p) < V,

thus

(h(ir)o(h(ir))~)n(h(p)o(h(j>))~) Ch(V) = Id.

Hence, x = y.
(3) F is injective on V.

Consider (a, b), (c, d) G V such that {(a, b) ,z), ((c, d) , z) G F for
some z &U.
Then (z, a) , (z, e) £ h (n) and (z, 6), (z, d) £ h (p). Since /i (7r) and
/i (/)) are functional binary relations, a = c and b = d.

Hence, the restriction of F to V gives a well-defined injective function
* : V —> t/ such that

*(a,ft) = c «=>• (c,a) G /i(7r) and (c,b) £ h(p) . (4.1)

We expand 05 to 05* G PFA by denning

RVS = {(x,*(y,z)):(x,y)£R A (x,z)eS}.

In order to show that 05* is closed under V, let us prove that

h(R)Vh(S) = (h(R)oh(Tr)~)n(h(S)oh(p)~) . (4.2)

xh(R)Vh(S)y
«- { by def. V }

3u,v(xh(R)u Axh(S)v A y = *(u, v))
& {by (4.1)}

3u,v(xh(R)u Auh(Tr)"^y Axh(S)v Avh(p)*^y Ay = *(u,v))
•*=> {by def. o }

xh(R)oh(ir)^y A xh(S)oh(p)""y
•& {by def. n }

x(h(R)oh(n)~) n (h(S)oh(p)-)y .
We will now see that h is a fork algebra homomorphism from 21 into 05*

(i.e., we will show that h preserves fork).
Consider r, s G A.

42 Representability and Independence

h(rVs)
= {by Ax. 9}

h((r;n) • (s;p))
— { h is a relation algebra homomorphism }

(h(r)o(h(n)r)n(h(s)o(h(p)D
= {by (4.2)}

h(r)Vh{s) . •

Lemma 4.3 AFA = I S P SAFA.

Proof In [B. Jonsson et al. (1952), Thm. 4.14] Jonsson and Tarski proved
that simple relation algebras are subdirectly indecomposable. This result
also holds for fork algebras, since a subdirect decomposition of a fork algebra
induces a subdirect decomposition of its relation algebra reduct. Joining
this with Birkhoff's theorem on the decomposability of arbitrary algebras
in terms of subdirectly indecomposable ones [G. Birkhoff (1944)], we prove
inclusion C. Inclusion 2 follows because AFA is a variety, SAFA C AFA,
and equations are preserved by I, S and P . •

In the proof of Thm. 4.2 we give below, we use the result announced
in [A. Tarski (1953)] on the representability of quasi-projective relation
algebras. This theorem is one of the central topics in algebraic logic, and
different kinds of proofs for it can be found in [A. Tarski et al. (1987),
Thm. 8.4(iii)], [R. Maddux (1989)] and elsewhere.

Theo rem 4.2 Given 21 € AFA, there exists 23 G PFA isomorphic to 21.

Proof In view of Lemmas 3.1 and 4.3, it suffices to prove that simple
fork algebras are represent able.

Given 21 € SAFA, by Cor. 4.1 its relation algebra reduct 21' is a simple
quasi-projective relation algebra. Thus, since quasi-projective relation al­
gebras are representable [A. Tarski et al. (1987), p. 242], there is a relation
algebra isomorphism h : 21' —> 23 onto an algebra of binary relations 23.
Since 21' is simple, we can assume that 23 is square [A. Tarski et al. (1987),
p. 239].

By Lemma 4.2, 23 can be expanded to 23* S SPFA, in such way that
h : 21 —• 23* is a fork algebra isomorphism. •

Theo rem 4.3 AFA = RFA.

Proof It follows from Thm. 4.2 that AFA C IPFA = RFA. By Thm. 4.1,
RFA C AFA. •

Independence of the Axiomatization of Fork 43

A direct consequence of Thm. 4.3 is that the classes of proper and ab­
stract fork algebras share the same first-order theory. This result on the
elementary equivalence of the classes is extremely useful in our setting,
since first-order formulas in the language of fork algebras now have a clear
meaning when being considered as assertions about binary relations (or
programs). It will be shown in Section 7.5 that, while equations suffice
to express algorithms, first-order formulas about relations can be used to
describe design strategies for program development. This adds a new di­
mension to the development of algorithms within fork algebras.

4.2 Independence of the Axiomatization of Fork

The fact that the class of fork algebras is a finitely based variety leaves
open the problem of whether the axiomatization adopted has superfluous
axioms. This is known as the independence of the axioms that characterize
fork. Avoiding superfluous axioms is important because fewer axioms make
the calculus easier to understand. Also, it may have a positive impact in
the performance of semi-automatic theorem provers. In this section we will
show that the axioms that characterize fork (Ax. 8-Ax. 10 from Def. 3.4) are
independent. In order to show the independence of a finite axiomatization
A = {A\,...,An}, it suffices to show that for each i, 1 < i < n, there
exists an algebra 21* such that

2UM\Mi} a n d 2 l iM«- (4-3)

In the particular case of fork algebras, given proper subsets of the ax­
iomatization we will construct algebras satisfying (4.3) by analyzing the
meaning of the missing axiom towards the representability of fork algebras.

In what follows, we will denote the set containing formulas Ax. 8-Ax. 10
from Def. 3.4 by A r m y .

Theorem 4.4 The set of axioms Axm^ defining fork is independent.

Proof In order to show that Ax. 8-Ax. 10 are independent, we will
present algebras of binary relations 21*, 1 < i < 3, and operations V*,
1 < i < 3, such that* (21,, V*) |= Axmv \ {Axm. i} but (21*, V*) \£
Axm. i. In the proof of Lemma 4.2, Ax. 8-Ax. 10 are used in order to

* Given an algebra 21 and an operation © : An —* A, by (21, ©) we denote the extension
of the algebra 21 obtained by adding the operation ffi.

44 Representability and Independence

prove that the relation F is indeed an injective function as required (see
Def. 3.1). Thus, each axiom imposes some properties on this relation F.

In order to prove that Ax. 10 is independent of Ax. 8 and Ax. 9, notice
that Ax. 10 is used in Lemma 4.2 to show that F is functional. Let us
define 2l3 as !EHe(lN+), the full algebra of binary relations on the set 1N+ of
all positive natural numbers, and let V 3 be denned for R,SC 1N+ x IN+

by

i ? V 3 5 = { (m,2™ * 3P) :mRn A mSp)

U { (m , 5 n * 7 p) :mRn A mSp} . (4.4)

In (4.4), F is the (non functional) injective binary relation

{ ((m , n) , 2 m * 3 ") : m,n € 1N+} U { ((m,n) , 5 m * 7n) : m , n € l N + } .

It is clear that 2l3 is closed under V 3 . Let V be a shorthand for the
binary relation IN+ x 1N+. Notice that

WY 3 V = { (m, 2 m * 3n) : m, n e IN+ } U { (m, 5 m * T) : m, n e 1N+ }

and

VV_3Id = { (m, T * 3m) : m, n G 1N+ } U { (m, 5" * 7m) : m, n e K + } .

Then, given binary relations R, S C M + x IN+,

R° (WV 3 7) = { (m,2n*3p):p£JN+ A m.Rn}

U { (m, 5" * 7p) : p e 1N+ A mRn }

and

So (VV3Id) = { (m, 2" * 3p) : n € 1N+ A m 5 p }

U { (m , 5 n * 7 p) : n £ l N + A mSp} .

Thus,

Ro(IdV3V) n 5 o (y V 3 K) = { (m , 2 % 3 I ,) : m i J n A mSp}

U{(m,5n*7p):mRn A m 5 p }

= R¥.3S .

Then, (2l3, V3) |= Ax. 8.

Independence of the Axiomatization of Fork 45

Given binary relations T, Q C 1N+ x 1N+,

(TV_3Q)~ = { (2™ * 3P, m) : m l n A mQp }

U { (5 n * 7 p , m) : m T n A mQp} .

Then,

(£ Y 3 S) o (T V 3 g r

= {(a,b) : 3c,d(a.Rc A aSd A bTc A &Qd) }

= {(a,6) : 3c(ai?c A 6Tc) A 3d(aSd A 6Qd)}

= | (a, 6) : 3c(ai?c A cfa) A 3d(aSd A dQ6) j

= [(a, 6) : 3c(aRc A c f a) } n [(a, 6) : Bd(aSd A dQb) }

= RoT nSoQ .

Thus, (2l3, V3) |= Ax. 9.
Let us show now that Ax. 10 does not hold in the structure (2l3, V 3) .
By definition of V 3 ,

{IdV3V)~ = { (2m * 3", m) : m, n e 1N+ }

u { (5 m * 7 " , m } : m , n € l N + }

and

(V S 3 Jd)~ = { (2" * 3 m , m) : m, n £ JN+ }

u { (5 n * 7 m , m) : m , n e ! N + } .

Then, the relation { (2m * 3", 5 m * 7") : m, n G 1N+ } is contained in

(^ Y 3 t O ~ V 3 (y V 3 / d r . Thus, (/ d V ^ r V 3 (V V 3 / d) ~ £ id.
Let us now prove that Ax. 9 is independent from Ax. 8 and Ax. 10.
In the proof of Lemma 4.2, Ax. 9 is used when proving that F is a total

and injective binary relation. Since only Ax. 9 is used when proving these
properties, violating any of them should provide good examples of algebras
satisfying Ax. 8 and Ax. 10 but not Ax. 9. In order to violate the injectivity,
let us consider the relation F C (IN x IN) x IN defined by

F = {({x,y),0):x,yeN} .

46 Representabitity and Independence

If we define 2l2 := 9*e (IN) and define for arbitrary binary relations R,SC

W x N

flY2S = {(m,F(n,p)) : mRn A m 5 p } ,

it is trivial to show that

(1) RV25 = { (m, 0) : m £ dom (R) A m e dom (5) },

(2) (2l2, Y 2) |= {Ax. 8, Ax. 10} but (2t2, V2) ^ Ax. 9.

In a similar way, if we want to violate the totality of F, we can define

F = { ((m, m) , m) : m e IN } .

In this case it is easy to check that

(1) RV_2S = RnS,
(2) (2l2, V2) |= { Ax. 8, Ac. 10 }, but (2(2, V2) ^ Ac. 9.

But, probably, the easiest way to prove that Ax. 9 is independent of the
other axioms is defining* F = 0. In this case, -RV25 = 0 for all binary
relations R, S C IN x IN. It is trivial to prove that (2l2, V2) |= Ax. 8 and
(2l2, V2) [= Ac. 10. On the other hand, (VV2V) o (V V 2 7) = 0 ^ V =
(Vo V) n (Vo i?). Thus, (2l2, V2) ^ Ac. 9.

Finally, let us consider the most interesting case, in which we prove that
Ax. 8 is independent from Ax. 9 and Ax. 10. In Lemma 4.2, Ax. 8 is used
in order to show that V is definable in terms of the relations (1'VI)" and
(1V1')". This suggests that Vx can be defined by cases, giving ad-hoc
definitions for IdV_xV and VV17d.

Let U = { a }, and let (£/*,*) be the free groupoid with set of generators
U. Let &i := fHe (£/*). The binary operation V defined by RV_S =
{(x,y*z) : xRy A xSz} satisfies axioms Ax. 8-Ax. 10. Let us define the
operation V_1 as follows:

J (f lV5) U Ida iiR = Id and S = V,

I RV_S otherwise .

The relation Ida is defined by Ida — { (a, a)}. Let us start by showing
that, in effect, (»i , V_i) ^ Ax. 8. Notice first that IdV.iV = (IdWV)Ulda.

tThis was called to my attention by Paulo Veloso in a private communication.

http://IdV.iV

Independence of the Axiomatization of Fork 47

On the other hand,

{Ido (Id^V)) n (Vo (VWJd))

= (IdYiV) n (Vo (VYJd))

= ((Id¥_V) u Ida) n (Vo (VYld))
= [(Id%V) n (Vo (VVId))) U [Ida n (Vo (VVId))] .

Let us analyze relations A and B. Regarding A, since Vo (VV/d) 2
WVV, A = IdVV. For relation £ , since the range of 1'0 is contained in
U, and the range of Vo (FVW) is contained in U* \ U, B = 0. Thus,

(Ido (IdV.iV)) n (Vo (VVJd)) = IdVV .

Since JdVV ^ (IdVV) U 7d0, (2li, Vx) ^ Ax. 8. It only remains to be
shown that axioms Ax. 9 and Ax. 10 are satisfied in (2li, Vj) .

That Ax. 10 is satisfied is easily checked as follows:

(Id%.iV)~Yi(VVi/d)^ = ((WVV) U / d 0) w S i (^ Y W) w

= ((IdVV) U / 4) ^ Y (F V W) ^ .

Since V is additive,

((KVV) u iday v(vvid)~
= l(IdVV)~V_(VV_Id)~}U[IdaV_(VV_Id)~} •

By Ax. 10, A < Id. For relation B, since the domain of Ida is contained
in U and the domain of (V V Jd)~ is contained in {7* \ [/, i? = 0. Thus,

(W Y i V 0 ~ Y i (^ Y i A 0 ~ C Id ,

as was to be shown.
Let us check at last that Ax. 9 is also satisfied. Notice that by definition

of V !, we can always write RV_iS as (RV_S) U a, where a can take the

http://IdV.iV

48 Representability and Independence

(by Def. Vj)

values Ida or 0. Given R, S,T,QCU* xU*,

(f lY iS)o (TYiQ)~

= ((.RVS) U a) o((TVQ) U /?)~

= (i ? V 5) o (T V Q) " U a o (T V Q r

U (flVS) o ^ U a o ^ . (V additive)

Since ran (a) and dom ((T^Q)^) are disjoint, ao(TVQ)"" = 0. Also,

since ran (RV_S) and dom(/3) are disjoint, (RV_S) o /?= 0. Thus

GRVjS) o (T V j Q) ^ = (flVS) o (T V Q) ^ U ao /3

(by previous discussion)

= (# o T n S o Q J u a o ^ . (by Ax. 9)

The following table shows the pairs of values (a, /3) for all possible values
of R, S, T and Q.

{R,S)

(Id,V)

other

{Id, V) other

(Ida, Ida) (Ida,Q)

(0, Ida) (0,0)

In the case (R,S) = (Id,V) and (T,Q) = (Id, V), ao (3= IdaoIda =
Ida. Then

(# 0 T n So Q\ u a o /3= (/d r\V)l)Ida = Id = RoT nSoQ .

For the remaining cases, notice that ao /?= 0, and thus

(RO T n So Q\ U ao^^RoT nSoQ .

Chapter 5

Interpretability of Classical
First-Order Logic

Classical first-order logic is a formalism suitable for the specification of
certain views of systems. It has a good expressive power and is relatively
easy to understand by non mathematicians. Since we are establishing the
foundations of a calculus for system specification and verification using rela­
tional methods, it seems natural to study the relationship between classical
first-order logic and the fork algebra calculus. Actually, as part of the soft­
ware development process we will translate (interpret) classical first-order
specifications into relational specifications. Such translation has to be well-
behaved in some sense. A possible way to formulate this good behavior is
by requiring the translation to be semantics-preserving. In this chapter we
will define the translation from classical first-order logic to the fork algebra
calculus, and prove the semantics-preservation theorem.

5.1 Basic Definitions

Tarski denned in [A. Tarski (1941)] the elementary theory of binary rela­
tions as a logical counterpart of the class of algebras of binary relations. In
a similar way we will define an elementary theory of fork relations (ETFR
for short) having as target the definition of the class of proper fork algebras.

Definition 5.1 Given a set of constant symbols C and a set of function
symbols with arity F, the set of individual terms on C and F (denoted by
IndTerm(C,F)) is the smallest set A satisfying:

(1) IndVarUCCA,
(2) If / G F has arity k and t\,..., tk G A, then f(ti,..., tk) € A .

49

50 Interpretability of Classical First-Order Logic

Definition 5.2 Given a set of constant relation symbols P, the set of
relation designations on P (denoted by RelDes(P)) is the smallest set A
satisfying:

(1) RelVar U { 0,1,1' } U P C A,

(2) If R, S e A, then (pL,Pi,R+S,R-S,R;S,RVs\ CA .

Definition 5.3 Let u be a symbol, then u* is the smallest set A satisfying:

(1) UGA,

(2) if x, y £ A, then the expression *(x, y) also belongs to A.

Elements of u* are called arities. The arity *(u, *(u, • • •)) with k occurrences
of u will be denoted by the number k. We will in general write u * • • • * u
(k occurrences of u) instead of *(u, *(u, •••)). For instance,

4 = *(u, -k(u, *(u, u))) — u*u-ku*u.

Definition 5.4 Given a set of constant symbols C and a set of function
symbols F, by IndTerm(C, F)*, we denote the smallest set A satisfying:

(1) IndTerm(C,F)CA,
(2) If *i,*2 6 A, then *{ti,t2) € A .

Definition 5.5 Given t G IndTerm(C,F)*, the arity of term t (denoted
by arity(t)) is inductively defined as follows:

(1) If t e IndTerm(C,F), then arity(t) = u,
(2) If *i,t2 e IndTerm(C,F)* and £ = *(t i , t2) , then

arity(t) — *{arity{t{), arity{t^)) .

Definition 5.6 Given a set of constant symbols C, a set of function
symbols F and a set of constant relation symbols P, the set of atomic
formulas of ETFR is the smallest set A satisfying:

(1) R = S G A whenever R, S € RelDes(P),
(2) t1Rt2 € A whenever *i , i2 € IndTerm(C, F)* and JR € RelDes{P).

From the atomic formulas, compound formulas are built as in first-order
logic, with quantifiers applied only to individual variables. Notice that once
the sets C, F and P are fixed, a unique set of formulas is characterized.
We will denote this set by ForETFR(C, F, P).

Interpreting FOLE 51

Definition 5.7 Given a set of constant symbols C, a set of function
symbols F and a set of relation constant symbols P, we define the formalism
ETFR(C, F, P) as follows:

Formulas: ForETFR{C, F, P).
Inference rules: Same as in ETBR.
Axioms: Extend the axioms of ETBR by adding formulas (3.2) and (3.3).

Much the same as Tarski defined his calculus of relations from the ele­
mentary theory of binary relations, we will define a calculus of fork relations
(denoted by CFR) from the elementary theory of fork relations.

Definition 5.8 Given a set of relation constant symbols P, we define the
formalism CFR(P) as follows:

Formulas: Those formulas from the ETFR in which neither individual vari­
ables nor constant symbols occur (i.e., Boolean combinations of
equalities between relational designations). The set of formulas for
CFR(P) will be denoted by ForCFR(P).

Inference rules: Same as in CR.
Axioms: Extend the axioms of CR by adding formulas (Ax. 8)-(Ax. 10)

from Def. 3.4.

In this and the remaining sections, given sets C, F and P we will denote
by FOLE(C, F, P) the first-order logic with equality on the language with
set of constant symbols C, set of function symbols F and set of predicate
symbols P.

5.2 In te rp re t ing FOLE

In order to fulfill the task of interpreting FOLE, we will perform an inter­
mediate step. First we will show how to interpret FOLE into ETFR, and
after doing this we will show how to interpret ETFR into CFR.

The algebraization of logics is a field of extensive and active work. In
the remaining part of this chapter and the next one we will show how fork
algebras can be used to interpret classical first-order logic, as well as many
non-classical logics. The reader interested in the algebraization of logics
should consider reading the book [L. Henkin et al. (1985)] (in particular
Section 4.3, which studies the connections between cylindric algebras and
logic, and Ch. 5, in which other algebraizations are presented), and also the

52 Interpretability of Classical First-Order Logic

book [P. Halmos (1962)]. Also fundamental are the works of the Budapest
school, specially the papers [H. Andreka et al. (1994); H. Andreka et al.
(1993); H. Andreka et al. (1981); I. Nemeti (1991)]. Finally, the work of
Blok and Pigozzi (see [W. Blok et al. (1989)] and the references therein) is
a very valuable source of results in algebraic logic.

Notice that in FOLE(C,F,P) there is a standard notion of arity for
function and predicate symbols. We will also assume that function and
constant relation symbols from ETFR(C, F, P) have an associated arity.
Arity of functions is defined as usual. For constant relation symbols the
arity is defined as a pair (01,02) where 0,1,0,2 £ u*. Arity a\ is called the
input arity and 02 is called the output arity. The reason for doing this is
that in in the process of problem specification we will convert first-order
predicates into input-output binary relations. To this syntactic definition
of arity also corresponds a semantic notion.

Definition 5.9 Let 21 € PFAU. We define arity : [7a -> u* by:

(1) If e £ Urel<n, arity(e) = u,
(2) If e = *(ei,e2), arity(e) = *(arity(ei),arity(e2)).

Note that the arity function is partial, since there might be elements in
U<& that are not finitely generated from urelements and for which Def. 5.9
does not produce a well defined arity in u*.

Definition 5.10 Given a PFAU 21, a binary relation R £ 21 has arity
(ai,a2) (ai ,a2 G u*) if

R Q { (x, y) £ U% x U<& : arity(x) = a\ A arity(y) = 02 } .

Given objects a\,..., a^, a\ ,..., a*/ and a finite set A = {a\ , . . . , a^ },
by A' we denote the set { a,i,..., a*/ }.

Given a finite set of symbols A = { a\,..., a^ } and a structure A, by
AA we denote the set { a\A,..., a^ } of the interpretations of the symbols
in the structure A.

We will define the semantics of ETFR(C, F, P) in terms of square proper
fork algebras with urelements. The definition is as follows.

Denni t ion 5.11 An adequate structure for ETFR(C, F, P) is a structure
A = (21, CA, FA, PA) satisfying:

(1) 21 e SPFAU,
(2) For each c € C, cA S Urel*,

Interpreting FOLE 53

(3) For each / G F of arity Jfc, fA : I7refa
fc -» tfrefe,

(4) For each p g P o f arity (ai ,a2) , p-4 G 21 has arity (ai,a2) .

Definition 5.12 Given 21 € PFAU, a mapping v : IndVar —• [/re/a is
called a valuation of individual variables. If x £ IndVar, by i/[x/a] we
denote the valuation defined by:

a if y = x .

Definition 5.13 Given a structure A = (21, CA, FA, PA) adequate for
ETFR(C, F, P) and a valuation of individual variables v, we define the map­
ping Vv giving meaning in A to terms of IndTerm(C, F)* as follows:

(1) VI/(x) = v(x), for each individual variable x
(2) Vv(c) = c-4, for each c G C

(3) K(/ (* i , • • •, *fe)) = fA{V»{ti), • • •, K(tfe)) for each / € F
(4) Vv{*(t,f)) = *(Vv(t),Vv(t'))

Definition 5.14 Let A = (2 1 , C A , F A , P A) be an adequate structure
for ETFR(C,F,P), and let m : RelVar —> A The pair (A,m) is called
a model of ETFR(C, F, P) . Mapping m extends homomorphically to com­
pound relational designations. In order to simplify the notation, m will
also denote the homomorphic extension.

Definition 5.15 Given <p G ForETFR(C,F,P) and a valuation for the
individual variables v, we say that v satisfies the formula <p in the model
M = ({ 21, CM, FM, PM) , m) (denoted by M, v (=ETFR <f) whenever:

- If 95 = t1pt2 with p G RelDes(P) and *i,*2 € IndTerm(C, F)*,

M,v H T F R V iff (K(*i),K(*2)} G m(p) .

- If <p = -ia,

X , ^ h=ETFR f i f f A l , f Ĵ ETFR OL .

- If <p = aV/3,

M, V |=ETFR V ^ A t , 1/ ^=ETFR aoi M,U |=ETFR /? •

- If V? = a A /?,

At , ^ |=ETFR V iff At , ^ HETFR <* and .M, z/ |=ETFR P •

v{x/a]{y)

54 Interpretability of Classical First-Order Logic

- If (f = 3xa,

•M, v |=ETFR 3xa iff

there exists a G Urel<& such that M, v[x/a] |=ETFR a .

- If (f = Vxa,

M, v |=ETFR Vza iff

for each a £ Urel^, M, v[x/a] |=ETFR
 a •

The following mapping translates formulas from FOLE(C,F,P) into
formulas of ETFR(C, F,P'). We will denote by ForFOLE(C,F,P) the set
of formulas in FOLE(C, F, P).

In order to simplify proofs, from here on given a first-order predicate
symbol p £ P with arity k, we will assume that the arity of p' € P' is
(n, m) (n, m € IN) with n + m = k. Moreover, we will assume that the
first n parameters from p will be input parameters of p' and the last m
parameters from p will be output parameters of p'.

Definition 5.16 We define the translation TV mapping formulas from
ForFOLE(C,F,P) to ForETFR(C,F,P') inductively as follows:

(1) Tv{p{tx,.. .,tn,t[,.. .,t'J) = * ! * • • • * tnP't[*---*fm,ifpsP
and p' has arity (n, m).

(2) T v (* i = t 2) = t i l ' t 2 ,
(3) Tv(-,a) = -,Tv(a),

(4) T v (a V / 3) = T v (a) v T v (/ 3) ,
(5) T v (a A / 3) = T v (a) A T v (/ 3) ,
(6) Tv(3xa) = 3xTx/(a),
(7) Tv(Vxa)=\/xTv{a).

Given a first-order term t and a valuation of variables v into a FOLE
model 21, by V l /(t) we denote the value of t under the valuation v in the
model 21.

Lemma 5.1 Let <j> e ForFOLE(C, F, P). Given a FOLE(C, F, P) model
21 with domain A, there exists a ETFR(C, F, P') model B such that for every
valuation of the individual variables v

21,v \=FOLE 4> <^=> B,v N T F R TV{$) .

Interpreting FOLE 55

Proof Let 23 be the full fork algebra with set of urelements A. Define,
for c £ C and / £ F , cB = c% and / 8 = / a . Define, for p € P of arity n
and p ' £ P' of arity (r, s) with r + s = n,

p' = {(a i*- - -*o r ,6 1 *-- -*6 J S > : p a (o i , . . . , a r , 6 i , . . . , 6 s) } .

Let m : iZeZVor -> B be arbitrary, and let B = ((fB,CB,FB,P'B),m).
It is clear that

Vt € IndTerm(C,F), Vv(t) = V„(<) . (5.1)

Let us proceed by induction on the complexity of the formula (p.
Given p £ P of arity k, p' £ P' of arity (r, s) and t\,..., tr, t[,..., t's £

IndTerm(C,F),

21 \=FOLE p(h, • • • ,tr,t[,... ,t's)

{ by Def. (=FOLB }

{V,(«1),...,v1/(tr))v1/(t'1),...,v„(aepa

{ by Def. p'B }
(V ^) * • • • * V„(t r) , V„(ti) * • • • * V„(f,)> G p ' S

{by (5.1)}

(K(*i) * • • • * K(«r), K W) * • • • * Vu{t's)) £ p'B

{by Def. HETFR}

B, V |=ETFR * ! * • • • * trp't[*•••*?„

< ^ {Def. T v }
B,v HETFR T V (P (* I , . . . , t r , t i , . . . , t ' a)) .

The remaining part of the inductive proof is simple and is left to the
reader. •

Lemma 5.2 Let <j> £ ForFOLE(C,F,P). Let A be a ETFR(C, F,P')
model. Then there exists a FOLE(C, F, P) model <8 such that for every
valuation of the individual variables v,

A, v |=ETFR TV (</>) «=> 03, v \=FOLE <f> •

Proof Let A = / / 2 1 , C A , F A , P ' A V m \ . Let us define B, the universe

of 03, as Urel%. For each c £ C and / £ F, we define c33 = c* and

56 Interpretability of Classical First-Order Logic

Z23 = fA- For each p' G P' of arity (r, s) we define

jr8 = J (a i , . . . , a r , 6 i , . . . , 6 s) : (ax * • • • * ar,bx * • • • * bs) G p'A j .

Let 05 = (B, C25, F*, P s). It is clear that

Vi G 7ndrerm(C, F) , V^i) = V„(i) . (5.2)

Let us proceed by induction on the complexity of the formula <t>.
If 4> =p{t\,... ,tr,t[,... ,t's) with p G P, then

A"(=ETFRrv(p(t l , . . . , t r ,* i , . . - ,* i))
{byDef. T v }
A f |=ETFR «l • • • • * t rp'*i *•••**',
{byDef. ^ E T F R }

(V^tt) * • • • * Vv{tr), Vv(t\) * • • • * Vv(t'r)) G p'"4

{ by Def. p* }
(vv(h),..., K(M, W) , . . . , K O G p*

«=* {by (5.2)}
<v„(*o,..., v„(tr), v,(t'o,..., v „ o G P

s

4=> {byDef. |=FOLE }

23,y hFOL£P(* i , . . . , t r , t i , - . . ,* i) •

The remaining part of the inductive proof is simple and is left to the
reader. •

The next theorem proves the interpretability of classical first-order logic
with equality into the elementary theory of fork relations. This will serve
as an intermediate step in the proof of interpretability of classical first-
order logic into the calculus of fork relations. Notice that since first-order
predicate symbols do not divide arguments between input arguments and
output arguments, this intermediate step arises naturally in the process of
translating specifications to the calculus of fork relations.

By \=FOLE <t> we will denote the fact that formula <fr is valid in FOLE.
In a similar way we say that a formula (f> from ETFR is valid in ETFR if
for each ETFR model A and each valuation v of the individual variables,
A, v (=ETFR </>•

Theorem 5.1 Let <j> be a FOLE(C,F,P) formula. Then

\=FOLE 4> « = > |=ETFR T V ((f)) .

Interpreting FOLE 57

Proof
=>) If J^ETFR Ty (</>), then there exists an ETFR(C, F, P') model A and a
valuation of individual variables v such that A, v J^ETFR ?V {(p). Then, by
Lemma 5.2, there exists a FOLE(C, F, P) model 03 such that 03, v Y^FOLE 4>-
Then, PFOLE <P-
4=) H^FOLE <t>, then there exists a FOLE(C, F, P) model 21 and a valuation
of individual variables v such that 21,^ ^FOLE <fr- By Lemma 5.1 there
exists a ETFR(C,F,P') structure B such that B,v ^ E T F R Tv(<f>). Then,
* E T F R T V (</>)• D

In the remaining part of this section we will show that ETFR(C, F, P)
can be interpreted into CFR(A) for a suitable set of constant relation sym­
bols A. Finally, by exploiting the relationship which exists between CFR(A)
and abstract fork algebras we will show how to reason algebraically in order
to prove logical properties from FOLE and ETFR. By l'{j we denote the
relation l 'u® • • • ®l'u-

v v '
k times

Given sets C, F and P consisting of constant, function and relation
symbols respectively, by K we denote the set C'UF'UP'. By CFR+(i^) we
denote the extension of CFR(i^) obtained by adding the following axioms:

(1) The formula

l ; l ' u ; l = l,

which implies that models of CFR+ are abstract fork algebras with
a nonempty set of urelements.

(2) For each c € C, we add the following equations stating that c' is a
constant relation having a urelement in its range:

c';c' + l'u = l'u (c' is functional),

1; c' = c' (c' is left-ideal) ,

c ';l = 1 (c' is nonempty).

(3) For each f £ F with arity k, we add equations stating that / ' is a
functional relation that takes k urelements as input and produces
urelements as output:

/ ' ; / ' + l'u = l'u,

i'5;/' =/'•

58 Interpretability of Classical First-Order Logic

(4) For each p £ P with arity (m, n), the following equations stating
that p' is a binary relation expecting m urelements as input and n
urelements as output:

1 u >P ' l u — P •

In (3) and (4) we are assuming that / ' has input arity k and that p'
has arity {m,n}. We can generalize to arbitrary arities by rearranging
parenthesis in a convenient way. For example, if p' is a relation constant
whose arity is ((u * u) * [u * u), (u * u) * u), we would impose the condition

Note that given a finite set K with constant, function and relation
symbols, only a finite number of equations are introduced in (l)-(4) above.

In what follows, t'n is an abbreviation for t\ • • • ;t (n times). For the
sake of completeness, i ; 0 is defined as 1'.

Prior to defining the mapping translating ETFR(C, F, P) formulas into
CFR+(K) formulas, we will translate individual terms to relation designa­
tions. This is necessary when translating atomic ETFR(C, F, P) formulas
of the form tRt', with t,t' e IndTerm(C,F)* and R e RelDes(P).

For the following definitions, a will be a sequence of numbers sorted in
increasing order. Intuitively, the sequence a contains the indices of those
individual variables that appear free in the formula (or term) being trans­
lated. By Ord(n, a) we denote the position of the index n in the sequence
a, by [a © n] we denote the extension of the sequence a with the index n,
and by a(k) we denote the element in the fc-th position of a.

Definition 5.17 The mapping 8a : IndTerm(C, F) -> RelDes(C U F'),
translating individual terms into relation designations, is defined induc­
tively by the conditions:

. I/>:°rd(»>(7)-1;7r if i is not the last index in a,
(1) oa{vi) = <

^p;Length(*)-l o t h e r w i s e .

(2) Sa(c) = c' for each c£G.

(3) M / (* i , • • •.*m)) = (M*i)V • • • V ^ (t m)) ; / ' for each f e F.

Before defining the mapping Ta translating ETFR formulas, we need to
define some auxiliary terms. Given a sequence a such that Length(a) = I,

Interpreting FOLE 59

we define the term ACT)n (n < w) by the condition

'M*vi))v • • • V ^ K ^ - D) viu v<5CTK(fc)) v • • • v^Kro)
Aff,n = •(if & = O d (n , [a ® n]) < /,

k M M i)) V • • • V5«r(«a(i)) Vlu if Ord(n, [o- © n]) = J + 1.

The term ACT,„ can be understood as a cylindrification [L. Henkin et al.
(1971); L. Henkin et al. (1985)] in the fc-th coordinate of an /-dimensional
space.

For the next mapping to be correctly defined, we assume that atomic
formulas of the form R = S do not occur in the scope of a quantifier over
individual variables. This is a reasonable assumption because, since atomic
formulas of this form do not contain any individual variables, they can be
promoted outside the scope of quantifiers. We will keep this assumption
for the remaining part of the chapter.

Definition 5.18 We define the mapping TCT translating ETFR(C, F, P)
formulas to CFR+(K) formulas as follows:

(1) Ta{R = S) d= R = S (R, S £ RelDes{P)),

(2) Ta{ti*---*trRt'l*----kt's) =f

T'a{h * • • • *t r i2*i * • • • * O = l 'u;! .

(k = Length(a), U,^ e IndTerm(C,F) for all i,j, 1 < i < r,
1 < j < s and R € RelDes{P)),

(3) Ta{-,a) A^ -iTa(a),

(4) TCT(aV/3) d=lf TCT(a)VTff(/3),

(5) T^aA/3) =f TCT(a)ATff(/?),

(6) Ta(3vna) d= T^vna) = V^,l,(k = Length(a)),

(7) T a (W n a) =f TWvna) = vb;l,(k = Length(a)),

(8) T'a(tl*----ktrRt'l*----kt's)
 d=

((*a(ti)v-.-v^(tr)) v wtDv-VMti));*)^;^ (5-3)
def

(9) T^a) ^ T>(a),

(10) n(aV(3) d^f TUa)+U(/3),

(11) n(aA(3) ^ Ta{a)-T'a{p),

60 Interpretability of Classical First-Order Logic

(12) T^vn(a)) ^ A a , „ ; ^ e n] (a) ,

(13) T^vn(a)) dM T^3vn-^a).

In (8) we are assuming that R has arity (r, s) (r, s £ IN). If we allow for
arbitrary arities, then the parenthesis in formula (5.3) must be rearranged.
For example, if R has arity ((u * u) * (u * u), (u * u) * u), then

TU(ti * t2) * (i3 * t4,)R(t5 * t6) * t7)

= (((<5<r(«l)V^(t2)) V (M*3)V<5„(t4))) V ((<5„(t5)V«5<r(t6)) V<M<7)) ;&) ; 2 ;1 .

Given a valuation of individual variables v and a sequence of indices a,
by Si/,<r we denote the object a\ * • • • * a^ * • • • * an where:

(1) n = Length(a),
(2) a, = u(va(i)) for all i, 1 < i < n.

Given a formula or term a, by aa we denote the sequence of indices of
variables with free occurrences in a, sorted in increasing order.

Lemma 5.3 Let a £ ForETFR(C, F, P) not containing any atomic sub-
formula of the form R = S, let a = aa and let A be a ETFR(C, F, P) model.
Then there is a CFR+(.£Q model B = { (03, CB U FB U PB) , m!) such that

A v HETFR a <=> s„i0. £ dom (m' {T'a(a))) .

Proof Assume A = ((21, CA, FA, PA) , m). Let us define B as follows:

(1) Since 21 £ SFullPFAU, let 23 £ FullPFAU such that 21 £ S { 03 },
(2) c e = { (x, c-4) : x £ U* }, for each c£C,
(3) / B = {(a1*---*an,b) : fA(au... ,an) = b}, for each / £ F,
(4) pB = pA, for each p £ P ,
(5) m'(R) = m(R) for each R £ RelVar.

It is clear that individual terms denote functional relations. Given
a functional binary relation / and an element a, by [/](a) we denote
that element b such that (a,b) £ / . We will prove next that for any
term t £ IndTerm(C,F) and any sequence o that extends at, Vv{t) =

Let t = V{ £ IndVar. If i is the last index in a, then K,(i>j) = v{vi) —
\pLenBthW-l\{sv,a) = [m1 (Sa{vi))](sUt<7). If i is not the last index in a then
Vv{vi) = i/fo) =' \p0rd(-i,a)-x*]{sv,a) = [m'{5a(vi))](s,,ta).

Let t = c £ C. K(c) = c 4 = [cB](sy,ff) = [m' (c)](a„ilT).

Interpreting FOLE 61

Let t = f{tu...,tk). Vv{f(tlt...,tk)) = fA{Vv(h),...,Vv(tk)). By
inductive hypothesis

Vv(ti) = [m' (Sa(ti))](su>(T) for al i i , 1 < i < k .

Then,

fA(yv(t!),...,Vv(tk))
= fA([m' (5a(*l))]K«r) , • • • , K (<Jff(tfc))]K«r))

= [/5]([m'(J<7(ti))](3v,ff) *•••* [m'ft ,(t f c))]K f f))

= [m ' (((^ (t 1)V-- -V^(t J f c)) ; /))] (^ , (7)

= [m'(^(/ (« i , . . . , t fc)))] (*^)-

The remaining part of the proof follows by induction on the structure
of the formula a. Notice that since m(R) = m'{R) for all R £ RelVar, then
for every S £ RelDes(P) we have m(S) = m'(S).

If a = ti * • • • *trRt[ic---kt's, then

A,v [=ETFR*I *---*trRt[* • • • * £ ,

<=» {Vv{h) * . . . * Vv(tr), Vv(t{) * • • • * VV{Q) £ m (R)

[m' (k(* i))] (^) * • • • * K (*aO]K<0> S m (i2)
(K (5ff(tl))](a„1<7) * • • • * [m' (M*r))](*«vr)>

K (M*i))](^) * • • • * K (<M*i))](̂ ,<0> G m' (R)

sv,a £ dom((m' (Jff(*i)) V • • • Vm' ($,(*,•)))

V ((m' (<*,&)) V • • • Vm' («5„(0)) ; (m ' (^) r) ; l ; l

sv,a e dom fm' (Y(<5CT(ii) V • • • V<5CT(ir))

v ((M*i)V-VMO);*));^;i))

This concludes the treatment for atomic formulas.

62 Interpretability of Classical First-Order Logic

If a = -i/3, then

A, v |=E T F R - , /?<=» .4,1/ j ^ E T F R /?

^ ŝ ,CT ̂ dom (m'(T^(/3)))

a, , , G dom (m'(T^(/3)))

(by m'(T^(/3)) right-ideal)

s ^ G d o m j m ' J T ^)))

s ^ G d o m C m ' ^ H ?))) .

If a = /3 V 7, then

-4, " t=ETFR/3 V 7

•4, ^ (=ETFR /3 or .4, " |=ETFR 7

*„,„. € dom (m' (7£(/3))) or sVt<r G dom (m' (^ (7)))

S , ,C TGdom(m'(T; (/3))Um'(T^(7)))

S , ,C Tedom(m'(T^(/3) + r ; (7)))

<*=> V e d o m f m ' ^ V T))) .

If a = 3uj/?, then

-4,^ NETFR 3viP

there is a G £/reZ<a such that ,4, i/[wi/a] J=ETFR /3

there is a G Urel* s.t. sy[l;./a]i[o.ffii] G dom (m' (T ^ (/?)))

av<a G dom (m' (Aa,i) °m' (V ^ , (/?)))

«„,„• G dom (m ' (A ^ ; ! } ' ^ (/?)))

*„ , „ G dom (m' (^ (3 ^ / 3))) .

a
Lemma 5.4 Z>e£ a G ForETFR(C, F, P) not containing any atomic sub-
formula of form R= S. Let a = aa of length k. Let Abe a ETFR(C, F, P)
model. Then, there exists a model B = ((03, C e U FB U PB) ,m!) for
CFR+(if) such that

A HETFR a < = • B HCFR+ Z(a) = l ' f i ; 1 .

Interpreting FOLE 63

Proof Let B be defined as in Lemma. 5.3.

A |=ETFR a <£=*> A, v |=ETFR
 a for all v

•£=>• sv<a £ dom(ra'(T£(a))) for all i/ (by Lemma 5.3)

<=^ m'(T;(a)) = l'fi;l

<=» 5 (= C F R + ^ («) = 1'U;1-

a
Lemma 5.5 Let a £ ForETFR(C, F, P), let a = aa of length k, and let
Abe a ETFR(C,F, P) model. Then, there exists a CFR+(K) model B such
that

A |=ETFR « «=*• B \=CFR+ Ta(a) .

Proof Assume A = ((Ql,CA,FA,PA) , m) . Let B be defined as in
Lemma 5.3.

If a is R = S with fl, 5 £ RelDes(P), then

.4 HETFR R = S <;=$• m{R) = m(5)

«=*> m'(fl) = m'(5)

<=> B hcFR+ R = S

<=• B |=CFR+ r f f(fl = 5).

If a is t\ * • • • * t r E t j * • • • * t's, then

A |=ETFR*I *---*trRt'1-k----kt's

^ B f=CFR+ T'a{a) = l'ft-,1 (by Lemma 5.4)

^=* 6 K F R + Ta{a).

If a is -i/3, then

^ N T F R - / ? <̂ => ^ E T F R / ?

<=* B*CFR+T f f(/3)

<=» B HCFR+ -T.tf)

<=» B hcFR+ r f f (^) .

64 Interpretability of Classical First-Order Logic

If a is p V 7, then

A HETFR P V 7 4=» „4 |=ETFR /? or .4 |=ETFR 7

^=> B K F R + W) or B (=CFR+ T„(7)

<=^ ShcFR+^(/3)vTCT(7)

<=^ BhcFR+^(/3V 7) .

If a is 3^/3, then

•A |=ETFR 3«»/3

«=* B f=CFR+ 7£(3v4/?) = 1'g; 1 (by Lemma 5.4)

<=> B h c F R + Ta{3Vip). n

Definition 5.19 Let i? be a set of constant relation symbols. A CFR+(i?)
model A=((%RA),m) is called square if 21 G SPFAU.

Given 21 G PFAU, s = ai * • • • * ak (a* € Urely, for all i, 1 < i < A;)
and a sequence a of indices increasingly sorted and of length k, by vs<a we
denote the set of valuations of individual variables v satisfying v(vai^) = aj.
Valuations in va%a agree in all those variables whose indices occur in a.

Lemma 5.6 Let a G ForETFR(C, F, P) not containing any atomic sub-
formula of form R — S, let a = o~a and let A be the square CFR+(K) model
((Ql,CAUFAUPA),m). Then, there exists a ETFR(C,F,P) model B
such that

s € dom (m {T'a{a))) <*=> B, v (=ETFR a for all v G i/s<a. .

Proof Let B be constructed as follows:

(1) Since 21 G S FullPFAU, let 58 G FullPFAU such that 21 G S { 93 }.
(2) For each c G C, if c"4 = { (x, a) : x G f/gi}, define cB = a.
(3) For each / G F of arity k,

fB(a1,...,ak) = b <=> (ai * • • • * ak,b) G fA .

(4) For each p G P we define p B = p ^ .

(5) We finally define m'(R) = m(.R) for all i? G fle/Var.

We will first prove, as an auxiliary result, that for every term t,

[m (8a(t))] (s) = Vv(t) for all v G v,t<r .

Interpreting FOLE 65

If t = Vi G IndVar and i is the last index in a,

[m(5a(„,))] (5) = [m (p W ^) - i)] (s)

$ Length{a)

= Vv{vi) for all f G i/„)<r.

If £ = Vi G IndVar and i is not the last index in a,

[m(6a(Vi))} (s) = [m (V ^ ^ - V)] (*)
= SOrd(i,a)

— Vv(vi) for all J/ G v3%IT.

lit = c £ C, then

[m (^ (c))] (S) = [c ^] (S)

= K,(c) for all 1/ G vs,a-

If f = / (<! , . . . tk) with / G F , then

[m (^ (/ (t i , . . . tk)))\ (s) = [(m (k(*i)) V • • • Vm (k(t f c))) ;/•*] (s)

= [fA]([m(6!T(t1))}(s)*...*lm(5lT(tk))}(s))

= [fA] (VAh) *•••* Vv(tk)) for all v G vs,a

= f (K(*i), • • •, K(**)) for a11 " e ".,«•
= K, (/ (t i , . . . , tfe)) for all v G IA,,CT.

Let us now prove the main result by induction on the structure of for­
mula a, i.e., we will prove that

s G dom (m {T'a{a))) «=> B, v (=ETFR <* for all v G i/Si<r

If a = ti * • • • * tmRt[* • •••kt'n, t h e n

s G 4om{m{T'(T{ti-k---*tmRt'1*---*tl
n)))

s G dom (m (((^ (t i) V • • • VS„{tm))

V (^(tiJv-.-v^cO);^)^;!))
([m(Sa(t1))}(s)*---*[m(Sa(tm))}(s),

[m (k(*i))] (*)*•••* [m (MC))1 (*)> G ™ (i2)

66 Interpretability of Classical First-Order Logic

<[m(*a(t i))] (s)*."*[m(M*m))](s) ,

[m (M*i))] {s)*.--*[m (M O)] (^)) e m' (i?)

(Vv(ti)*---*Vv(tm),

^(t ' i) * • • • * K (4)) G mf (R) for all 1/ G v„i0

<£=> £, 1/ [=ETFR *i * • • • * tmRt[• • • • • i^ for all v G ^SjCT.

If a = -i/3, then

s G dom (m(T^p))) <̂ =» s G dom (m(2£(/jj))

s t dom (m (T^/?))) (by m (T^P)) right-deal)

&, " ^ETFR P for some 1/ G i/Si<T

#, 1/ J^ETFR P for all 1/ G vSy„

<=» B, ^ (=ETFR -•/? for all 1/ G vSt<T.

If a = /3 V 7, then

s G dom (m (T^/J V 7)))

«=> s G dom (m {T'a{P))) or s G dom (m (T^(7)))

-<=>• 23, v |=ETFR /? for all v G i/„)(T or B, v f=ETFR 7 for all v G ^,CT

«=>• B, 1/ |=ETFR ^ V 7 for all v G i/S)(r.

If a = 3viP, given s = a\ * • • • * a^ we will denote by Si%a the element
a\ * • • • * a;_i * a * ai * • • • * a^. Then,

sG dom (m (T , ^ / ?)))

^=> s G dom (mCA^) ;m (V ^ , (/?)))

there exists a G Urel% s.t. (s,Sja) G m (A^i) and

S i , a G d o m (m (T ^ e i] (/ 3)))

there exists a G Urel<x s.t. (s, Sj]a) G m(Ag-i) and

B, V |=ETFR /? for all V G ^ ^ . k © *]

there exists a G f/re/a s.t. B, v[vi/a] |=ETFR P f° r all f 6 ^s.a

«=> B, v |=ETFR 3UJ/3 for all v G I>SI<T.

Lemma 5.7 Lei a G ForETFR(C, F, P) not containing any atomic sub-
formula of form, R = S. Let a = aa of length k. Let A be the square

Interpreting FOLE 67

Qr~R+(K) model { (21, CA U FA U PA) , m). T/ien, tfiere exists a mode/ £
/or ETFR(C, F, P) such that

m(Z(a)) = Vk
v < = • fihTFR«-

Proof Let Z3 be constructed as in Lemma 5.6.

m(Z(a)) = Vh
u

s G dom (m (2£(a))) for all s € dom (l'{j)

B,v\= a for all i/ G I/SJCT and s G dom (l 'u) (by Lemma 5.6)

B, v \= a for all v

B f=ETFR Ol.

D

Lemma 5.8 Let a e ForETFR(C, F, P), let a = aa of length k, and let
A be a square CFR+(K) model. Then, there exists a ETFR(C, F ,P) model
B such that

•A h=CFR+ Ta{a) «=» B |=ETFR a •

Proof Let us assume that A = ((21, CA U FA U PA) , m) . Let B be
defined as in Lemma 5.6.

Notice that since m = m', for all R G RelDesP we have m{R) = m'(R).
If a is R = S with R,S e RelDes(P), then

A hcFR+ TV (A = 5) «{=» .A HCFR+ # = 5

m(i?) = m(5)

m'(fi) = m'(S)

B HETFR fl = S.

If a is ti * • • • * tmRt\ *---*t'n, then

-^ H=CFR+ T , T (* l * - " * t m i t t i * • • • * * «)

<*=* .4 HCFR+ ^ (* i * • • • *tmRif1 * • • • * <) = I ' u J l

«=>• i3)=ETFR * i * - ••**m-R*i *• - - * 4 - (by Lemma 5.7)

68 Interpretability of Classical First-Order Logic

If a is ->/?, then

A (=CFR+ Ta{->P) «=> A K F R + - W)

< = • ^ ^ C F R + ^ (/ 3)

«=>• S^ETFR/?

«=>- B |=ETFR 1)8.

If a is /? V 7, then

-4 K F R + Ta[fi V 7) <=^ .4 (=CFR+ W) V T f f(7)

<=}• A |=CFR+ W) or .4 HCFR+ ^ (7)

« = > 6 |=ETFR P or H |=ETFR 7

4 = > i B (= / 9 V 7 .

If a is 3vi(3, then

.4 K F R + ^ (3^ /3) ^ A K F R + ^ (3^ /3) = l ' f i ; l

<=> B (=ETFR 3^/3. (by Lemma 5.7)

D

Theorem 5.2 Let a £ ETFR(C, F, P) and let a = aa. Then,

HETFR a «=>• | = C F R + X T («) •

Proof
=>) If J^CFR+ rCT(a), then there exists a model A= ((2l,CA,FA,PA) ,m)
with 21 £ SAFAU such that A 1^CFR+ Ta(a). From .4. we build a square
model A' up as follows. Let 21' e SPFAU such that 21 3* 21' and / i : ,4 -> A'
a fork algebra isomorphism (21' and h exist by Thm. 4.3). For each c £ C,
let cA' = h{cA). For each f £ F, let / x ' = h(fA). For each p £ P , let p-4' =
h(pA). Finally, for each R £ RelVar we define m'(R) = h(m(R)). It is clear
that A' ^CFR+ ?V(a). Then, by Lemma 5.8 there exists a ETFR(C, F , P)
model B such that B J^ETFR ot. Then, ^ETFR &•
<=) If)^ETFR 01 then there exists a ETFR(C, F, P) model A such that A J^ETFR

a. Then, by Lemma 5.5 there exists a C F R + (C U F u P) model B such that
BPCFR+ Ta{a). Then, Ĵ CFR+ Ta(a). D

Theorem 5.2 shows that reasoning in ETFR can be replaced by reasoning
in CFR+. The reason why this is considered an algebraization of ETFR is

Interpreting FOLE 69

because validity in CFR+ reduces to the verification of the validity of a
formula in SAFAU.

Theorem 5.3 Let a € ETFR(C, F, P) and let a = aa of length k. Then,

NlFR <* «=> KFR+ Z(a) = l'fi .

Proof
=>) If >XFR+ T^a) = l'g then there exists a CFR+(C U F U P) model A =
((%CA,FA,PA),m) with 21 e SAFAU such that AJ^CFR+ T'a(a) = l'fi.
Prom .4 we build a proper model A' up as follows. Let 21' £ SPFAU such
that 21 = 21' and h : A —> A' a fork algebra isomorphism (21' and h exist
by Thm. 4.3). For each c£C, let c 4 ' = h(cA). For each / £ F , let J"-4' =
h(fA). For each p £ P, let p-4 = ^(p-4). Finally, for each R £ RelVar we
define m'(P) = h(m(R)). It is clear that .4' >*CFR+ T'„{a) = l'u- T h e n >
by Lemma 5.7 there exists a ETFR(C, F, P) model $ such that B ^ETFR a.
Then, J^ETFR a.
<=) If -HETFR OL then there exists a ETFR(C, F, P) model A such that .4 J^ETFR

a. Then, by Lemma 5.4 there exists a CFR + (CUFUF) model B such that
B J^CFR+ T'a (a) = V *. Then *C F R + I£ (a) = 1' fi. •

In order to obtain an algebraization of FOLE it suffices to compose
the mappings Ty and T'a. The result of this composition is the mapping
T v ,a : ForFOLE(C,F,P) -» ForCFR(C U F U P) . Recall that in order
to apply the mapping Ty it is necessary to divide arguments of predicate
symbols between input and output arguments. For the next theorem, and
in order to simplify the notation, we will assume that all arguments are to
be considered as input arguments.

(1) Tv, g(p(t i , . . . , t f c)) = (gg(ti)V • • • V5a(tk)) ; P ' ; 1 ,
(2) r v , a (- . a) = T v , a (a) ,
(3) T v , f f(aV/3)=Tv, . (a)+Tv,C T(/3) ,
(4) Tv,CT(3w„a) = ACTi„;TVi[CTe„](a).

By using the translation Tv,<r we can prove the following theorem.

Theo rem 5.4 Let a £ ForFOLE(C,F,P) and let a = aa. Then, if a
has length k,

\=FOLE a «=>• |=CFR+ Ty,a(a) = l 'fi;! •

70 Interpretability of Classical First-Order Logic

Proof By Thm. 5.1,

\=FOLE OL •<==>• [=ETFR T"V (a) . (5 .4)

By Thm. 5.3,

N T F R T V («) ^=> K F R + ^ (T v (a)) = l ' S ; l . (5.5)

Joining (5.4) and (5.5) and the fact TVy!J(a) = T^(Tv(a)),

\=FOLEa <=> K F R + TVi<T{a) = 1'S;1 .
D

Prom CFR+(P) we define the formalism CFREQ+(P) as a restriction of
CFR+(P). CFREQ+(P) is defined as follows.

Formulas: Equations from ForCFR+.
Inference Rules: The following inference rules for equational logic:

(!) I"CFREQ+ P = P, for every p € RelDes(P),
(2) p = q I-CFREQ+ Q = P, for every p,q€ RelDes(P),
(3) p = q,q = r hCFREQ+ p = r, for every p,q,r £ RelDes(P),
(4) If I~CFREQ+ P = Q, r £ RelDes(P) contains the subterm p, and

s is obtained from r by replacement of p by the term q, then
!~CFREQ+ r = s,

(5) If I~CFREQ+ p = q, x is a, variable (possibly occurring in p or
q), and r e RelDesP, then t-CFREQ+ p[r/x] = q[r/x\. That is,
substitution of variables by terms is a valid inference rule.

Axioms: Set of equations characterizing the class of abstract fork algebras
with a nonempty set of urelements.

Notice that in the axiomatization of CFREQ+ we dropped the axiom
requiring models to be simple.

Theo rem 5.5 Let e be an equation from CFREQ+. Then,

l=CFR+ e ^ = ^ !"CFREQ+ e •

Proof By definition of the formalism CFR+,

|=CFR+ e iff for all 21 G SAFAU, 211= e . (5.6)

Interpreting FOLE 71

Since the variety generated by SAFAU is AFAU, SAFAU and AFAU share
the same equational theory. Thus,

for all 21 € SAFAU, 211= e iff for all 21 e AFAU, 21 (= e . (5.7)

Then, by (5.6) and (5.7),

|=CFR+ e iff for all 21 e AFAU, 211= e . (5.8)

By definition of CFREQ+ and (5.8),

l=CFR+ e « = > t=CFREQ+ e • (5-9)

Since equational logic is complete [G. Birkhoff (1944)],

l=CFREQ+ e <=> ^CFREQ+ e • (5-10)

Finally, joining (5.9) and (5.10),

(=CFR+ e •£=» !~CFREQ+ e • n

Theorem 5.6 Let a e ForFOLE(C,F,P) and let a =• oa of length k.
Then,

\=FOLE a «=> hCFREQ+Tv ,a(a;) = l 'fi;1 •

Proof By Thm. 5.4,

NFOLEC* <=• K F R + 2 V ,*(<*) = 1'S;1. (5.11)

By Thm. 5.5,

r=CFR+rVl<r(a) = l , u ; l <=* hC F R E Q +Tv ,C T(a) = l ' S ; l . (5.12)

Thus, by (5.11) and (5.12),

\=FOLE OL <=> I-CFREQ+ Ty>(T(a) = l '{j ; l .

If in the preceding theorem a is a sentence, then Length(aa) = 0. Then
the following corollary holds.

Corollary 5.1 If a & ForFOLE(C, F, P) is a sentence, then

\=FOLE a. •<==$• h C F R E Q +T v , () (o ;) = 1.

72 Interpretability of Classical First-Order Logic

The result shown in Cor. 5.1 was already known for other algebraic sys­
tems closely related to fork algebras, as quasi-projective relation algebras
and pairing relation algebras. The work on the interpretability of first-order
theories in quasi-projective relation algebras was extensively developed by
Tarski and Givant in [A. Tarski et al. (1987)], while the version for pair­
ing relation algebras was developed by Maddux in [R. Maddux (1989)]. In
[L. Henkin et al. (1985)], FOLE is algebraized using cylindric algebras.
Cylindric algebras are a very natural algebraic counterpart of FOLE. The
fact that they have a Boolean algebra reduct allows the propositional part
of FOLE to be algebraized. Also, for each quantifier 3UJ, a new operator
Ci (called the i-th cylindrification) is defined. The axioms for the cylin-
drifications are natural translations of valid properties for the existential
quantifiers. For example, the property 3vj3u,a •*=> 3vj3via corresponds
to the cylindric algebra axiom aCjX = CjCiX, for all pairs of indices (i,j).
Finally, for each pair of indices (i,j), a constant element d^ (called the
ij-diagonal element) is distinguished. Intuitively, d^ characterizes alge­
braically the predicate v* == Vj. Notice that an infinite number of axioms
are required for axiomatizing the infinitely many cylindrifications and di­
agonal elements. The fact fork algebras have only finitely many operators
and are axiomatized by a finite set of equations makes fork algebras more
attractive in computer science, where this finiteness plays an essential part
in the implementability of a calculus for program construction based on
fork algebras.

Chapter 6

Algebraization of Non-Classical Logics

The results in this chapter were obtained jointly by Prias and Orlowska
[M. Frias et al. (1997)c; M. Frias et al. (1997)d]. Equational reasoning
based on substitution of equals by equals is the kind of manipulation that
is performed in many information processing systems. The role of equa­
tional logics in the development of formal methods for computer science
applications is increasingly recognized and various tools have been devel­
oped for modeling user's systems and carrying through designs within the
equational framework [D. Gries (1995); D. Gries et al. (1993)].

The idea of relational formalization of logical systems was originated
by Ewa Orlowska in [E. Orlowska (1988)] and further developed in [E.
Orlowska (1992); E. Orlowska (1994); E. Orlowska (1995)].

Examples of relational formalisms for applied logics can also be found
in Buszkowski and Orlowska [W. Buszkowski et al. (1996)], Demri and
Orlowska [S. Demri et al. (1996); S. Demri et al. (1994)], Herment and
Orlowska [M. Herment et al. (1995)] and elsewhere. The paradigm of rela­
tional formalization of logical systems is based on the principle of replacing
any logic with a theory of a suitable class of algebras of relations [W. Mac-
Caull (1997); E. Orlowska (1988); E. Orlowska (1992); E. Orlowska (1994);
E. Orlowska (1995)]. In order to define such a theory for a given logic,
the language of the logic is to be translated into a sufficiently expressive
language of relational terms in a validity preserving manner, i.e., a logical
formula a is valid if its translation T(a) is a term such that T(a) = 1 holds
in every relation algebra from the underlying class of algebras. However,
since the class of representable relation algebras is not finitely axiomatizable
[D. Monk (1964)], and the finitely axiomatizable class of relation algebras is

73

74 Algebraization of Non-Classical Logics

not representable [R. Lyndon (1950)], the existing relational frameworks for
non-classical logics suffer several disadvantages. The class of fork algebras
is both finitely axiomatizable and representable, and hence a fork algebra
formalism seems to be an appropriate candidate for relational formalization
of non-classical logics.

The standard semantics of non-classical logics are usually defined in
terms of frames [S. Kripke (1963); S. Kripke (1965)], that is, relational sys­
tems consisting of a set W of states and a family of accessibility relations in
W. In any particular logical system the accessibility relations are assumed
to satisfy some constraints. The meaning of a propositional formula is de­
fined, first, by means of an assignment m of subsets of W to propositional
variables, and second, by extending m to all the formulas of the language
under consideration. In this way every formula a is interpreted as a subset
of states, with the intuition that m(a) consists of those states in which a
is true. The meaning m(a) of formulas built with the classical proposi­
tional connectives of negation, disjunction and conjunction is defined from
the meanings of the subformulas of a by the well known interpretation of
these connectives in terms of Boolean operations of complement, join, and
meet, respectively. The meaning m(a) of formulas built with intentional
operators, such as modal operators of possibility and necessity, is usually
defined in terms of both the values of m for the subformulas of a and an
accessibility relation, which is most often a binary or ternary relation in
W.

The interpretability of a non-classical logic in the calculus CFREQ"1" is es­
tablished by means of a deduction preserving translation of formulas of the
logic into formulas of CFREQ+. Under this translation, formulas, formerly
understood as sets of states, and accessibility relations, receive a uniform
representation as relations. The propositional connectives are transformed
into relational operations. The constraints on accessibility relations are
translated into relational equations. The major advantage of relational for­
malization is that it provides a uniform framework for representation of a
broad class of applied logics and enables us to apply an equational proof
theory to these logics.

In the first part of this chapter we will develop an equational formalism
based on fork algebras that is capable of modeling a great variety of applied
non-classical logics and of simulating non-classical means of reasoning. In
the second part of the chapter we will define a Rasiowa-Sikorski style deduc-

Basic Definitions and Properties 75

tion system [H. Rasiowa et al. (1963)] for fork logic. We will then define a
validity preserving translation from the language of intuitionistic logic and
minimal intuitionistic logic into the language of fork logic. Next, we dis­
cuss three methods of intuitionistic reasoning within the framework of fork
logic. The first method consists of extending the Rasiowa-Sikorski proof
system of fork logic with some specific rules that reflect properties of the
accessibility relation from Kripke models of logics based on intuitionism.
The second method is based on a kind of relational deduction theorem that
enables us to express derivability in fork logic of a term (representing a for­
mula of a logic) from a finite number of terms (representing conditions on
the accessibility relation). In this case the plain proof system for fork logic
is an adequate deduction tool. The third method employs the equational
theory of fork algebras. We extend this equational theory with equations
that represent the required properties of the accessibility relation and treat
them as specific axioms, as we will do with modal logics in the first part of
the chapter.

The chapter is organized as follows. Section 6.2 presents the fork logic
FL, a simplified version of CFREQ+. In Sections 6.3-6.5 a wide variety
of modal logics are algebraized. In Section 6.6 we discuss the fork alge­
braic formalization of modal logics determined by a Hilbert-style axiom
system. In Section 6.7, propositional dynamic logic is algebraized. In Sec­
tion 6.8 the logic FL' (a restriction of ETFR) is defined, and in Section 6.9 a
Rasiowa-Sikorski style calculus for FL' is presented. In Sections 6.10-6.12
the calculus presented in Section 6.8 is used for algebraizing intuitionistic
logic, minimal intuitionistic logic and a wide class of intermediate logics.

6.1 Basic Definitions and Proper t i e s

T h e o r e m 6.1 Let V be the variety generated by the class o/.AiSFAU.
Then, V = AFAU.

Proof Clearly, V C AFAU. Let us prove the other inclusion. Given an
algebra 21 e AFAU, by the representation theorem (Thm. 4.3) 21 is iso­
morphic to an algebra 25 £ PFAU. By definition of PFAU and Thm. 3.1,
25 € ISPFullPFAU. Since full proper fork algebras with urelements are
atomic, simple and have urelements, and varieties are closed under isomor­
phisms, subalgebras and products, 25 £ V. Finally, since 21 is isomorphic

76 Algebraization of Non-Classical Logics

to 03, also 21 e V, which implies that AFAU C V. •

Theo rem 6.2 Let V be the variety generated by SPFAU. Then V = AFAU.

Proof Similar to the proof of Thm. 6.1. •

Theo rem 6.3 The equational theories of j4iSFAU and SPFAU coincide
with the equational theory of AFAU.

Proof Is a direct consequence of Thms. 6.1 and 6.2. D

Definition 6.1 We say that an equation e is provable from a set of
equations E in CFREQ+ relativized to an equational theory A (denoted by
E !~CFREQ+,A e, if £ U A KCFREQ+ e -

The following definition gives an abstract characterization of urelements.

Definition 6.2 Given 21 € AtFAU, x £ A is called an abstract urelement
if x is an atom and x < V \j.

In the remaining part of this chapter we will deal with sentences from
FOLE, therefore, as Cor. 5.1 shows, only very restricted equations are
needed (i.e., just those equations in which the term in the right-hand side
is 1). Thus, we will use a simplified version of CFREQ+ that will be called
fork logic FL.

6.2 T h e Fork Logic FL

In this section we introduce what we call Fork Logic FL. We also present
a completeness theorem and a theorem on the interpretability of classical
first-order logic in FL. This interpretability theorem will prove to be useful
in Section 6.4 for the description of model constraints.

Definition 6.3 We define the alphabet of fork logic as the union of the
sets described by the following conditions:

(1) A countable set RelVar of relational variables.
(2) The set of logical symbols: +, •,;, V, ~,", 1', 0,1.
(3) A countable set RelConst of extralogical symbols (i.e., relational

constants whose meaning varies between models).

Definition 6.4 A finite sequence of symbols from the alphabet of fork
logic is a fork formula iff it belongs to every set Q, satisfying:

The Fork Logic FL 77

(1) RelVar U RelConst U { 1', 0,1 } C fi.

(2) If Ji, 5 € fi then j R,R,R+S,R-S,R;S,RWS } C fi.

Definition 6.5 We say that a fork formula a is provable from a set of
fork formulas T in an equational theory A (denoted by T \~FL,A «) if

{7 = 1 :7 G T } I-CFREQ+.A a = 1 •

Definition 6.6 A fork model is a structure (21, m) where 21 G AFAU,
and m is the meaning function that assigns relations in A both to variables
in RelVar and to the extralogical symbols in RelConst. It is clear how to
extend m homomorphically to a function m' : f2 —• A. For the sake of
simplicity, we will use the name m for both mappings.

Definition 6.7 A fork model (21, m) is called proper if 21 G PFAU, and
simple if 21 G SAFAU. Similarly, a fork model is called atomic if 21 G AtFAU.
The class of proper fork models will be denoted by PFM, and the class of
simple fork models by SFM. The class of fork models simple and proper will
be denoted by SPFM and the class of atomic fork models will be denoted
by AtFM. The class of atomic and proper fork models will be denoted by
AtPFM, and the class of atomic and simple proper fork models by AtSPFM.

Definition 6.8 A fork formula tp is said to be true in a fork model T —
(21, m) (denoted by T \=FL <p) if fn{f) = 1 holds in 21. A fork formula tp
is said to be true in a class of fork models /C, if for every member T of K,
F \=FL <P-

Definition 6.9 A fork formula (p is said to be valid in FL (denoted by
\=FL <f) if in every fork model J7 we have T \=FL <P-

Since P FA is a finitely based variety whose axioms are those for abstract
fork algebras, the following theorem holds.

Theorem 6.4 FL is strongly complete, i.e., given a fork formula R, a
set $ of fork formulas, and an equational theory A,

$ \=FL,A R in PFM «=> $ \~FL,A R •

Proof
=>•) If $!^FL,A R, then there exist 21 G AFAU and a meaning function m
such that

(1) for every equation I = r G A, m(l) = m(r),

78 Algebraization of Non-Classical Logics

(2) for every ^ 6 $, m((p) = 1,
(3) m{R) + 1.

By Thm. 4.3, there exists <B € PFAU and an isomorphism h : 21 —» 23.
Let m' be the meaning function defined by m'(a) = h (m(a)). Then,

(1) for every equation I = r £ A, m'(l) = m'(r),
(2) for every ^ S $, m'(y>) = 1,
(3) m'(R) ^ 1.

Thus, it is not the case that $ \=FL,A. R in PFM.
<=) The proof in this direction is simple and is left to the reader. •

As a consequence of Cor. 5.1, the following theorem on the interpretabil-
ity of classical first-order theories in FL follows.

Theorem 6.5 Any first-order theory is interpretable in FL, i.e., given a
first-order theory ^ and a sentence a, there exists a set of fork formulas
Fy (constructed from $!) and a fork formula ta (constructed from a) such
that

* (- a 4=^ Fy \-FL ta .

Proof Define F* as { TVt„(ij) : V G * } and tx as Tv,CT(a). Then apply
Cor. 5.1. ' •

6.3 Modal Logics

In this section we present an introduction to modal logic. We begin by
introducing the notion of frame, and then the notion of Kripke model. Using
these structures we define satisfiability and validity in modal logics. For a
thorough treatment of modal logic we direct the reader to [P. Blackburn et
al. (2001)].

Definition 6.10 A frame is a structure (W, R} where W is a nonempty
set of possible worlds and R C W x W is a binary accessibility relation
between worlds.

Definition 6.11 Given a frame (W,R), a Kripke model is a structure
SOT = (W, R, m) where m is a meaning function that assigns subsets of W
to propositional variables.

Modal Logics 79

Definition 6.12 The inductive definition of satisfiability describes the
truth conditions depending on the complexity of formulas. For the atomic
formulas (propositional variables) we have:

(at) M, w f= p iff w £ m(p), for any propositional variable p.

For formulas built with extensional operators such as classical nega­
tion, disjunction, conjunction or implication, their satisfiability at a possi­
ble world is completely determined by satisfiability of their subformulas at
that world.

(-1) M,w\=->a iff not M, w \= a,
(V) M, w (= a V 0 iff M, w \= a or M, w f= /3,
(A) M, w \= a A p iff M, w \= a and M,w\= f3,

(->) A f > | = a - > / 3 i f f A / > | = - . a V / 3 .

For formulas defined from modal operators, such as [R] (necessity) and
(R) (possibility), we have

([R]) M,w \= [R] a iff for all u e W, {w,u) G R implies M,u\= a,
({R)) M,w\= (R) a iff there is u € W s.t. (w, u) e R and M, u (= a.

For the sake of simplicity, we use the same symbol for the relational constant
R that appears in modal operators and the accessibility relation that is
denoted by this constant.

In various modal logics, the accessibility relation is assumed to satisfy
certain conditions. If we call FRM(C) the class of all those frames in which
the accessibility relation satisfies a given set of conditions C, then the set
of all the formulas valid in that class is called the logic L(C). For example:

K
T
KB
B
KA
KB4
54
S5

=
=
=
—
=z

=
=
=

L{%),
L({ reflexive}),
L({ symmetric }),
L({ reflexive, symmetric }),
L({ transitive }),
L({ symmetric, transitive }),
L({ reflexive, transitive }),
L({ equivalence }), etc.

80 Algebraization of Non-Classical Logics

Definition 6.13 Given a Kripke model Wl = (W,R,m) and a modal
formula a, a is said to be true in 9JI if

Wl, w |= a for all w £ W .

Definition 6.14 A modal formula a is called valid if it is true in all
models.

6.4 Represen ta t ion of Cons t ra in ts in FL

In many nonclassical logics, accessibility relations in Kripke models must
satisfy some properties or 'constraints'. We have already shown examples
of constraints assumed in particular modal logics in the previous section.
In this section we will show how these constraints can be captured in an
abstract relational language by using fork logic.

When constraints are given as first-order formulas predicating about
worlds, sometimes it is possible to capture these constraints by appealing
to relation algebra concepts, without using fork logic. For example, in the
case of the logic T, in which the accessibility relation must be reflexive, we
can represent this fact in relation algebra with the condition

V+R = l. (6.1)

If we look at (6.1) as a fork algebra equation, then a first advantage
is given by the representation theorem (Thm. 4.3). It allows us to look
at 1' as the diagonal relation, + as the union between sets, and 1 as the
universal relation, property that is not shared in general by relation alge­
bras. Another advantage of fork logic is its expressiveness, since fork logic
allows us to express strictly more things than relation algebras. Recall that
while relation algebra terms are adequate for interpreting just a three vari­
able fragment of first-order logic (see [A. Tarski et al. (1987), pp. 76-87]),
Thm. 6.5 guarantees that all of classical first-order logic can be interpreted
in fork logic. An immediate consequence of this is that many developments
which resort to algebras of binary relations can now be carried on just by
resorting to the framework of abstract fork algebras.

In order to formalize the previous remarks, let A be a set of first-order
constraints defining a set of Kripke models. We represent the set A in the
logic FL by {TV,CT(<5) : 5 e A}.

Interpretability of Modal Logics in FL 81

6.5 In terpre tabi l i ty of Moda l Logics in FL

Throughout this section we will assume a fixed (but arbitrary) modal logic
L. Since the notion of satisfiability has a finer granularity in modal than
in classical logics because of the notion of satisfiability at a given world, we
will define a similar notion for FL.

Definition 6.15 Given an atomic fork model (21,m), x € A is called a
relational world if it is an atom satisfying x < V u •

Definition 6.16 Given an atomic fork model T = (21,m), T satisfies
the fork formula a in a relational world w (denoted by T, w \=FL ct), if in
the fork algebra 21 the inequality w;m{a) ^ 0 is true.

In order to interpret L in FL we will proceed in the following way.

(1) We will define a mapping TM from modal formulas to fork formulas.
(2) We will prove that given a Kripke model & = {W,R,m} and a

formula a, there exists a fork model T (constructed from R) such
that a is satisfied at a world w in & iff TM{CX) is satisfied in the
relational world { {w, w) } in T.

(3) We will prove that given a fork model T for L and a modal formula
a, there exists a Kripke model Si (constructed from T) such that
TM(OC) is satisfied at a given world w in J- iff a is satisfied at w in
R.

Definition 6.17 Before defining the mapping TM, we define the mapping

T'M^T-

(1) T'M(pi) = Pi, where pt is a propositional variable and Pi is a rela­
tional variable,

(2) 7^(-a) = l 'u ;7^R,
(3) TM(aAP)=T'M(a).TM(f3),
(4) T'M(aVl3) = TM(a) + TM(f3),
(5) TM((R)a) = R;TM(a),
(6) T'M{[R]a)=T'M{-,(R)-^a).

We finally define the mapping TM by TM(OI) = T'M(a)+ \jl.

For the sake of simplicity, in Def. 6.17 (5) and (6), we assume that the
constant R from the modal language is translated into a constant from the
language of fork logic that is denoted by the same symbol.

82 Algebraization of Non-Classical Logics

Lemma 6.1 Given a Kripke model R= (W,R,m) for L, a world w £ W,
and a modal formula a, there exists T = (A,m') £ AtPFM constructed
from &, and a relational world w' constructed from w such that

&, w \= a 4=> T,w' \=FL T'M(a) .

Proof Let 21 be the full fork algebra with set of urelements W. 21 is
simple, proper and atomic. Let m'(Pi) be the right-ideal relation with
domain m(pi). Let w' be the relational world { (w,w) }. More generally,
given v £ W, let v' := { {v,v} }. The remaining part of the proof proceeds
by induction on the structure of the formula a.

a=Pi-.

a = ^/3:

&, w (= a
{bydef. H
w £ m(pi)

{bydef. m'(Pi)}
w £ dom (m'(Pi))
{ by def. w' }
w';m'(Pi)^0
{ by def. \=FL }
F,w>\=FLTM(a).

&,w \= a
{bydef. H

{ by inductive hypothesis }
F,w'\£FLT'M({3)
{bydef. Y=FL}

w';T^(/3)=0
{ by properties of binary relations }
t i / ; l 'u; l£GS)^0
{ by def. f=FL }
F,w' \=FLT'M(a).

Interpretability of Modal Logics in FL 83

a = /3V7:

&, w \= a
{bydef. H
&, w \= j3 or &, w f= 7
{ by inductive hypothesis }
^ X N F L T'M((3) or ^ ,u ; ' ^ F L Tj^(7)

{ by def. \=FL}

« ; ' ; r ^ C 8) ^ 0 o r i i ; ' ; I X f (7) ^ 0
{ by properties of binary relations }
W;(T'M(P)+rM(y))*0
{ by def. \=FL }
F,w'^FLT'M(a).

a = (R) /3:

&,w (= a
<=> {bydef. H

there exists u such that loiiu and &, u \= /3
<*=*> { by inductive hypothesis }

wRu and J7, w' (=j?£ T'M{f3)
^ {bydef. ^ F L }

u ; i ? u a n d u ' ; T ^ (/ 3) ^ 0
<=$• { by properties of binary relations }

w'\R\TM{p)±Q
<=> {bydef. \=FL}

F,w' \=FLT'M{O).

U

Lemma 6.2 Given T = (21,m) € AtSPFM, a relational world w and a
modal formula a, there exists a Kripke model R= (W,R',m') (constructed
from J-) and a world w' £ W (constructed from w) such that

T,w \=FL T'M(a) <^> R,w'\=a .

Proof Let us take W = Urdu, R' = { (x,y) € W2 : x;m(R);y ^ 0 },
w' = w, and let m' be defined by m'(pi) = {u G W : u\m(Pi) ^ 0} . In
order to prove the theorem we will proceed by induction on the structure
of the formula a.

Algebraization of Non-Classical Logics

T,w \=FiT'M{a)
<s=> { by def. \=FL }

<=» { by def. m' }
w' £ m'(pi)

^=> {by def. h)
£, w' (= a.

F,™ \=FLT'M(O)

{bydef.T^ a n d ^ F L }

™;l'u;T^(/3)^0

| by £>om (T'M(P)) -Dom (T'M{(3)\ = O a n d w atom }

w;T'M(f3)=0
{ by def. \=FL }
F,w£FLT>M(p)
{ by inductive hypothesis }

{by def. H
£, iu' |= a.

F,w \=FLT'M(a)
<=^ {by def. f = F L a n d T ^ }

w;(Th(/3)+Thh))*0
<=$• { by properties if binary relations }

u ; ; T ^ (/ ?) ^ 0 o r i i ; ; T k (7) # 0
«=̂ > { by def. |=F L }

F,w \=FL T'M{(3) or F,w \=FL TM{i)
•<=> { by inductive hypothesis }

A, w' |= p or £, w' (= 7
<*=* {by def. H

£, u/ |= a.

Interpretability of Modal Logics in FL 85

a = (R) 0:

F,w \=FLT'M((X)

<^> { by def. \=FL }
w;R;T'M(f3)^0.

Since 21 is atomic, there is an atom u < Ran(R) •Dom(T'M{p)).
Since Ran(R) < l'u, u < l 'u, and therefore is a relational world.
Thus,

w;R;T'M(f3)^0
{ by previous paragraph }
w;R;u^0 and u;T'M(/3) ^ 0

{ by def. H F L }

(w,u) e R' and F,u^FLT'M{(3)
{ by inductive hypothesis }
(w, u) £ R' and R, u \= (3
{by def. H
R, w' j= a.

D

From Lemmas 6.1 and 6.2, we obtain the following result on the inter­
pretability of the modal logic K. In order to shorten notation, given a set
of modal formulas * , by T M (*) we denote {TM{^) : ^ £ * } .

Theorem 6.6 Given a set of modal formulas ty and a modal formula ip,

* \=K V <=» TMm \=FL TM{<p) in AtSPFM .

Proof =>) Let us suppose it is not the case that TM(^) \=FL TM{V) in
AtSPFM. Then, there exists T = (2l,m) e AtSPFM such that the set
of equations {TM(tp) = 1 : ip £ * } holds in 21, but TM(ip) ^ 1. Then,
Dom (T'M(</>))• l'u 7̂ 0, and since 21 is atomic, there exists an atom w such
that w < Dom (T'M(<p))-Vu. Then, since (Dom (T'M(tp))-l'u);Tfo(tp) = 0,
we have w;T'M(tp) = 0. Thus the fork model J- and the relational world w
satisfy J7, w \=FL TM(^) and T', w ^=FL TM{<P)- Then, by Lemma 6.2 there
exists a Kripke model R — (W,R',m') and w' £ W such that w' satisfies
\& in the model R, but does not satisfy <p, which contradicts the hypothesis.
4=) Let us suppose it is not the case that \& \=K <p. Then, there exists
a Kripke model R = (W,R,m) and w S W such that w satisfies \J> in
the model R, but ip is not satisfied. Then, by Lemma 6.1 there exists

86 Algebraization of Non-Classical Logics

T = (21,m') e AtSPVW and a relational world w' such that TM{^) holds
at w' in .F, but TM{<P) does not, which contradicts the hypothesis. •

The following corollary shows the real strength of Thm. 6.6.

Corollary 6.1 Given a set of modal formulas \t U {ip },

*^K<P <=> TM^>) hFL TM(<fi) •

Proof By Thm. 6.6, * \=K <p iff T M (#) |=J?L T w (p) in the class of
AtSPFM. By Thm. 6.3, TM{p) \=FL TM(<p) in the class of AtSPFM
iff TM{^) \=FL TM(<P)- Finally, by completeness of equational logic [G.
Birkhoff (1944)], TM(*) ^FL TM(<P) iff TM(*) \~FL TM{V)- •

Theorem 6.6 is proved for the modal logic K, in which no constraints
are imposed over the accessibility relation. The next theorem generalizes
the previous result.

Theo rem 6.7 Given a modal logic L(T), where V is a set (not necessarily
finite) of first-order sentences,

Proof Follows directly from Cor. 5.1 and Cor. 6.1. •

6.6 A Proof Theoret ical Approach

If the logic L under consideration has an axiomatic system that is complete
with respect to the semantics of (the language of) L, then we can prove
interpretability of L in fork logic in a proof theoretic style. As an example,
let us show how the equational calculus of fork algebras can be used for
proving interpretability of some specific modal logics.

Definition 6.18 The calculus for the modal logic K is given by the
following axiom schemas and rules:

(K) [R](A-,B)^([R}A^[R}B).
(RN) {A} \-K [R}A
(MP) {A,A^B}\-KB.

The following theorem shows that we can replace provability of any
formula a in the logic K by provability of a fork logic formula obtained
from a in fork logic.

A Proof Theoretical Approach 87

Theorem 6.8 For every modal sentence a, we have

VK a <*=> \-FL TM{OL) .

Proof

=>) We will proceed by induction on the length of proofs. Let us have a
proof of length 1, then a must be an instance of the axiom schema K.

TM(K) = VV;T^([R](A - B)) + T'M([R]A - [R]B) + ul

= Vu;Vu;R;Vu;T^(A^B) + VV;VV;R;VU;T^{A)

+ VU;R;VU;T0T) + UT

= R;VU;T^(A)+T^(B) + VU;R;T^{A)

+ l'u;i?;7V5) + uT

= R; (T'M{A).T^{B)) + R;T^(A) + l ' u ; J 2 ; 5 £ (l) + uT

= r u ; i J ; ((T; (i) - ip)) +WA)) +i'u;-R;5UB)+UT

> Vu;R;T^{B) + Vu;R;TiJB) + uT

= ul + ul

= 1.

Since TM(K) > 1, it must be TM{K) = 1, as was to be proved.
If the length of the proof is greater than 1, then:

(1) a was obtained by RN from a formula /3, then if TM(P) = 1, we
have

TM([R}(3) = Vu;R;Vu;T^(/3) + ul

= ru;# ; ru ;u l+UT

= l ' u ; ^ 0 + UT

= 1.

(2) a was obtained by MP from the formulas f3 and /3 —> a. Then, if

88 Algebraization of Non-Classical Logics

TM(P) = 1 and TM{P —> a) = 1, we have

r M (a) = 0 + T'M(a) + ^ T

= Vu;^l +T'M(a) + ^T

= l ' u ; I p j + T » + ^ T

= TM(p -> a)

= 1.

<=) Let us suppose it is not the case that \~K OL. Then, since the calculus is
complete, there exists a Kripke model 9JI = (W, R, m) and a world w £ W
such that VJl, w Y=K <X. Thus, by Lemma 6.1, there exists a fork model
J- = (21, m!) and a relational world w' such that !F,w' \£FL C*, which
contradicts the hypothesis. D

As a second example, let us consider the version of Thm. 6.8 for the
modal logic T.

Definition 6.19 The calculus for the modal logic T is obtained from the
calculus for the logic K by adding the axiom schema

(T) [R}A^A.

It is well known that the calculus T is complete with respect to those
frames whose accessibility relation is reflexive. Reflexivity can be easily
characterized as an equation in the calculus of relations. For instance, the
equation 1' u < R says that R is reflexive when R is interpreted as a relation
on the set of urelements. Nevertheless, in the following theorem we will use
the characterization of reflexivity provided by the mapping Tv,a (Def. 5.18)

Tv,«r(Va:(iia:a;)) = l u ; (l ' V V;R) ;2;1 .

Even though the equation obtained in this way is more complex, it is
worth emphasizing that it was obtained automatically from the first-order
definition of reflexivity.

A Proof Theoretical Approach 89

Now we will show that both equations characterizing reflexivity are
equivalent.

Tv,CT (yx(Rxx)) = 1

l u ; (r V ! ' ; £) ;2;1 = 1 (by applying TV,CT)

lu ;{y-B S j ; l = l (by Ax. 5 and Thm. 3.2.1)

l u ; (l ' - . f t) ; l=0 (byBA)

(ul;l) • (l ' - i ?) ; l = 0 (by Ax. 7)

«=> u i < (r--ft) ;i (byBA)

-*=> 1' u < 1' • R (by prop, of right-ideals)

<̂ => l'u < £ (by BA)

<$=> 1' u < i?. (by monotonicity of v)

Theorem 6.9 For every modal formula a,

\-T a ^> Tv>a {Vx(Rxx)) \-FL TM(a) .

Proof Let us show that Tv,<r (Vz (Rxx)) \-FL TM {{R]A -> A).

TAf([12]i4-»i4) = i ,u;i ,u;i2;i'u;r^(i4) + T^(A) + 0 i

= R;TM(A) + T'M{A) + ul

= l 'u;r^(A) + Vu;T'M(A) + UT

= 1.
•

Next, let us consider the logic B, whose accessibility relation is reflexive
and symmetric. The following definition presents a calculus for B.

Definition 6.20 The calculus for the logic B is obtained from the cal­
culus for T by adding the axiom

(B) A -» [R] {R) A.

90 Algebraization of Non-Classical Logics

It is easy to show that applying the mapping Tv,<r to the first-order
sentence Vx,y(Rxy —> Ryx) (which asserts the symmetry of R) we obtain
an equation equivalent to the simpler relational equation R = R.

Theorem 6.10 For every modal formula a,

\-B a <^=> TV,CT (Vzy (Rxy -> Ryx)) \-FL TM(a) .

Proof Let us show that the axiom schema B satisfies TM{B) = 1. Ap­
plying the mapping T'M, we obtain

T'M(A-+RA)
= { b y d e f . T ^ } ^ _ _ ^ = ^

VU;T'M(A) + Vu;R;Vu;R\T'M(A)
= {byBA}

VU;T'M(A) + Vu;R;l'u;R;T'M(A)
= {byBA}

= { by Thm. 2.3.19 and BA}

(ST + l'u;T^(^)) • (UT + l'u;B;l'u;fli75^4))
= {by BA, fl = l 'u ; f l ; l 'u, ? M = 1'U;?M }

= { by R symmetric }

UT+ ((T'M(A)) • (R;R;T>M(A)))

> {by (2.2)}

^1 + 1;(R;T'M(A) • (R;T'M(A)))
= {byBA}

ul + 1;0
= {by Thm. 2.3.1}

UT + 0
= {byBA }

ul-

Thus,TAf(B) = r ^ (B) + U T = u l + U T = l . •

Interpretability of Propositional Dynamic Logic in FL 91

6.7 Interpretability of Propositional Dynamic Logic in FL

Propositional dynamic logic is considered as a programming logic, i.e., a
logic suitable for asserting and proving properties of programs. Dynamic
logic is a modal logic whose modal operators are determined by programs
understood as binary relations in a set of computation states. For thorough
presentations of dynamic logic see [D. Harel (1984); D. Harel et al. (2000)].
The following definitions provide a formal description of propositional dy­
namic logic.

Definition 6.21 Let us consider a set PQ of atomic programs, and a set
Fo of atomic dynamic formulas. From these sets we will construct the sets
F of dynamic formulas and P of compound programs.

F and P are the smallest sets satisfying the following conditions:

(1) true G F, false £F,FQC F,
(2) if p G F and q G F then ^p e F and (p V q) G F,
(3) if p G F and a G P then (a) pGF,
(4) Po C P,
(5) if a G P and /3 G P then (a U /?) G P, (a;/?) G P and a* € P ,
(6) i f p e F t h e n p ? e P .

Notice that in Def. 6.21 the sets F and P are defined by mutual recur­
sion, i.e., in order to define F we assume the definition of P (in (3)) and in
order to define P we assume that F is defined (in (6)).

Definition 6.22 A dynamic model is a triple 25 = (W, r, S) where W is
a set of states, T assigns subsets of W to atomic formulas, and 8 assigns
subsets of W x W to atomic programs. The mappings r and 6 are extended
inductively to determine the meaning of compound formulas and programs
as follows:

r(true) = W,
T(false) = 0,

T(->P) = r(p),

r(pVqr) = T (P) U T (?) ,

T((a)p) = { s G W : 3t ((s, t) G 5(a) A t G r(p)) } ,
6(a;0) = { (s,t) : 3u((s,u) G 5(a) A (u,t) G *(/?)) } ,
<J(aU/?)=<5(a)u<5(/3),
S(p?) = {(s,S):seT(p)},
5(a*) — 5(a)* (the reflexive and transitive closure of 5(a)).

92 Algebraization of Non-Classical Logics

Prepositional dynamic logic is know to have a complete Hilbert-style
calculus. The calculus is given in the following definition. The proof of
the completeness of the calculus is given in [D. Harel (1984)], Thm. 2.11,
p. 515.

Definition 6.23 The calculus for prepositional dynamic logic is given by
the following axiom schemes and inference rules:

(Al) all instances of tautologies of the propositional calculus.
(A2) (a) (p Vg) <->«£*} pV(a)g) .
(A3) (a;/3)p«->(a></3>p.
(A4) <aU/?)p<->«a)pV</?)p).
(A5) (a *) p ~ (pV(a)(a*)p) .
(A6) (q?)p<^pAq.
(A7) [a*] (p - > [a] p) - (p - [a '] p) .
(A8) [a](p->9)->([a]p-»[<*]«).
The inference rules for the calculus are, as in K, modus ponens and

generalization.

The presence of the Kleene star operator in the language of dynamic
logic requires a slight generalization of fork algebras in order to obtain the
interpretability result.

Definition 6.24 A closure AFA (CAFA for short), is a structure (21,*)
such that 21 G AFA, and * satisfies the equations

R* = V+R;R*, (Ax. 11)

R*;S;1<S;1 + R*;(S-1 • R;S;1). (Ax. 12)

The second equation was added for technical reasons. It is needed in
order to prove Thm. 6.11 below. In order to show its validity, let us analyze
its meaning. The second-order formula

VRVSVx (3y (xR*yAy£S)=>

(i e Sv3z(xR*zAz <£ S A3w(zRwAw <= S))))

expresses that if a finite path exists in the graph induced by R, which
connects x with an element y £ S, then, either x is already in S, or from x

Interpretability of Propositional Dynamic Logic in FL 93

we can reach an object outside S which is .R-next to an object in S. This
is a desirable property of the operation *. Keeping in mind that right-ideal
relations represent sets, it is easy to see that Ax. 12 in Def. 6.24 represents
this second-order formula.

Prom closure fork algebras, it is an easy task to generalize fork logic
to the so called closure fork logic (denoted by CFL). The construction of
closure fork logic is analogous to the construction of fork logic.

In the forthcoming theorems the mappings TDL and Tp defined below
will play a central role.

Definition 6.25 In order to define the mappings TDL and Tp from dy­
namic logic formulas and compound programs, respectively, into terms in
the language of closure fork algebra with urelements, we first define the
mappings T'DL and Tp by mutual recursion.

T'DL(pi) = Pi, (pi an atomic formula.)
T'DL(true) = ul,
T'DL(false) = 0,
T'DLhp) = Vu;Ti)L(p),
TDL(pVq)=TDL(p)+TDL(q),
T'DL{{R)p)=TP{R)-T'DL{pl
Tp(Ri) = Ri, (Ri an atomic program.)
Tp(RuS) = Tp(R)+TP(S),
Tp(R;S)=TP(R);Tp(S),
TP(R*) = TP(R)*,
TP{pl) = T'DL{p)-l\.

Next, we define the mapping TDL by TDL{®) = T'DL(a) + \j\.

In a similar way as in FL, we introduce the notion of closure fork model.

Definition 6.26 A closure fork model is a pair (21, m) where 21 is closure
abstract fork algebra with urelements (CAFAU), and m is the meaning
function that assigns relations in A both to variables in RelVar and to the
extralogical symbols*. It is clear how to extend m homomorphically to a
function m' : 0, —> A. For the sake of simplicity, we will use the name m
for both mappings.

*In this case, the extralogical symbols are the atomic programs and the atomic formulas.

94 Algebraization of Non-Classical Logics

Lemma 6.3 Given a dynamic model D = (W, r, 6), there exists a closure
fork model C = (21, m) such that for any dynamic formula <p

dom (m(T'DL(V))) = T{<p) .

Proof Let Ri be an atomic program, and pi an atomic formula. Let 21
be the full fork algebra with set of urelements W. Let us define m (Pi) =
{ (s,x) : s G r(pi) } and m (Ri) = 5(Ri). The proof is by induction on the
structure of the formula ip.

<P = PH

ip = true:

<f = false:

dom (m(T'DL{pi)))
{ b y d e f . T ^ L }
dom (m(Pi))
{ by def. m }

T(Pi).

dom (m(T'DL(true)))
{ b y d e f . T ^ }
dom(ul)
{by W= llrel*}
W
{ by def. T }
r(true).

dom (m(T'DL(false)))
{bydei.T'DL}
dom (0)
{by def. 0}
0
{ by def. r }
r(false).

Interpretability of Propositional Dynamic Logic in FL 95

(p = -»p:

dom(jn(rDL(-rp)))
= { b y d e f . T ^ }

d o m (l ' u ; m (T ^ (p)))

= { by m (T'DL(p)) right-ideal}
W\6om{m{T'DL{p)))

= {by inductive hypothesis}
W\r(p)

= {by def. r }

T(TP).

<p — pV q:

dom(m(I£L(pV <?)))
= {by def. 2 ^ }

6om{{m{T'DL{p)+T'DL{q))))
= {by def. m }

dom (m (T'DL(p))) U dom (m (T'DL(q)))
= {by inductive hypothesis}

T(P) U r(q)
= {by def. T}

T{pWq).

f = (Q) P: Let us prove by induction on the structure of Q that

m(TP(Q)) = 5(Q) .

Q = Rn

m(TP(Ri))
= { by def. TP}

m(Ri)
= {by def. m}

S(Ri).

Q = Rl)S:

m(Tp{R\JS))
= { by def. Tp}

96 Algebraization of Non-Classical Logics

m(TP(R)+TP{S))
= {by def. m }

m(Tp(R))Um(TP(S))
= {by inductive hypothesis}

S(R) U 5(S)
= {by def. 6}

6(RUS).

Q = R;S:

m(TP(R;S))
= {by def. 7> }

m(Tp(R);TP(S))
= {by def. m }

m(Tp(R))om(TP(S))
= {by inductive hypothesis}

S(R)oS(S)
= {by def. <5}

S(R;S).

Q = R*:

m(TP{R*))
= {by def. TP}

m{TP{R)*)
= {by def. m }

m{TP{R)Y
= {by inductive hypothesis}

w
= {by def. J }

Q = q?: By definition of Tp,

m{Tp{ql)) = {m{T'DL{q))-Vu) .

But,

™{T'DL{q)) -l'u = {(«;,«;> G W 2 : w e dom (m(2^ L (g))) } .

Interpretability of Propositional Dynamic Logic in FL 97

Since the complexity of q is strictly smaller that the complexity
of <p, by inductive hypothesis

m(T'DL(q)) -l'u = { (» ,») G W2 : w € T(<?) } = 5(g?) .

Finally,

dom(m(TJbL«g>p)))
= {by def. T ^ }

dom (m(TP(Q);T^L(p)))
= {by def. m }

dom(m(TP(Q))om(Ti,L(p)))
= {by previous lemma}

dom{5(Q)om(T'DL(p)))
= {by def. o }

{ s G W : 3t G W ((s, i) G <5(Q) A t e dom (m (T|,L(p)))) }
= {by inductive hypothesis}

{ S £ ^ : 3 t 6 W ((S | «) e (5 (Q) A t G r(p)) }
= {by def. T }

r ((Q) p) . n

Theorem 6.11 Given a dynamic formula <p,

Proof =>) Proving that \~CFL TDL(<P), is equivalent to proving that
TpL(<p) = ul- The proof proceeds by induction on the length of proofs. If
the proof has length 1, then <p must be an instance of one of the axioms.
Let us analyze each one of the axiom schemes.
(Al) If <p is an instance of a propositional tautology, T'DL(tp) = ul c a n De

easily proved.
(A2) By definition of <->,

{a)(pVq) *-> ((a)pV{a)q)

= ((a)(pVq)-+((a)pV(a)q)) A ((a) (p V q) «- ((a) p V (a) q)) .

Since T'DL (P A Q) = T'DL (P) -T'DL (Q), it suffices to show that

T'DL{(a)(pVq)-+({a)pV{a)q)) = y,l and

rDL{(a)(p\/q)<-((a)pV(a)q))=ul.

file:///~cfl

98 Algebraization of Non-Classical Logics

T'DL({a)(pVq)^((a)pV(a)q))
= {bydef. -»}

Vu;Tp(a);(T>DL(p)+T>DL(q)) + TP(a);T'DL(p) + TP(a);T'DL(q)
= {by Ax. 2}

l'u;TP (a) ; {T'DL (p) +T'DL (q)) + l'u ;2> (a) ; (T'DL (p) +Tf,L (g))
= {by Ax. 2}

l 'u; (r p (a) ; (T f , L (p) + T f , L (g)) + TP (a) ; (T ^ (p) + T ^ (<?)))

= {byBA}

ul-

^ (W (? V ?) - ((a) p V (Q) g))
= {bydef. <-}

Vu;TP (a) ;T'DL (p) + TP (a) ;T'DL (q)
+ TP(a);(T'DL(P)+T'DL(q))

= {by Ax. 2}
VU;TP (a) ; (Tf,L (p) +T'DL (q)) + 1'ujTp (a) ; (T'DL(p)+T'DL (q))

= {by Ax. 2}

l 'u; (Tp{a)-{T'DL(p)+T'DL{q)) + TP (a) ; (T'DL(p)+T'DL (g)))

= {byBA}

ul-

(A3)
Tf,L«a;/?)p <-> (a) (ftp)

= {by def. «-> }
T'DL(((a;P)p^(a)(P)p) A «a ; / J)p - (a) </3>p))

= {by defs. —>, <— and T[,L }

(l ' u ; rp (a ; / 3) ;T f , L (p) + l ' u ;T P (a) ;TP (/?) ;T'DL(p))

• (l ' u ; T p (a) ;TP (/?) ;T'DL (p) + l ' u ; T P (a;/J) ;T|>L (p))

= { by def. T p }
= {by Ax. 2 and BA}

u l -u l
= {BA}

ul-

(A4)
T i , L ((a U / 3) p ^ ((a) p V (/ 3) p))

= {by def. *-*}
Ti,L (« a U/J) p - > « a) p V </?)?)) A ((aU (3)p <- ((a) p V (/3)p)))

Interpretability of Propositional Dynamic Logic in FL 99

= { b y d e f . T ^ }
(l 'u ;TP (a U (i) ;T'DL (p) + TP (a) ;T'DL (p) + TP (/?) ;T'DL (p))

• (l ' u ; r p (a) ; r i , L (p) + TP{(3)-T>DL(p) + TP(aU f3) ;T'DL(p))

= {bydef. TP}

(l 'u ;TP (a U /?) ;T^L (p) + l'u ;TP (a U /?) ;T£,L (p))

• (l ' u ; T P (a U / J) ; T £ L (p) + l ' u ; T P (a U / ?)

= { by Ax. 2 and BA }

u l -u l
= {byBA}

ul-

(A5)

T'DL{{**)P ~ (pV(a)(a*)p))
= {by def. <-»}

T'DL(((a*)p^(PV(a)(a*)p)) A «a*)p «- (p V (a) <a*)p)))
= {by defs. —>, <— and T'DL }

(vu;Tp(a*);T'DL(p) + T'DL (p) + TP (a) ;TP (a*) ;T'DL (p))

• (l 'u ;T'DL (p) +TP (a) ;TP (a*) ;T'DL (p) + Tp (a*) -T'DL (p))

= {bydef. Tp}

(l 'u ;TP (a r s r ^ ^ + ^ C p) + T p (a) ; r P (a)* j T ^ (p))

• (l 'u ;Ti,L (p) + Tp (a) ;Tp (a)* ;Tf,L (p) + T P (a)* ;2£ L (p))

= {by Ax. 2}

(l 'u ;Tp (a)* ; rb L (p) + (1' + TP{a) ;TP(ay) (p))

• (l ' u ; (1' + TP (a) ;TP (a)*) -T'DL (p) + T P (a)* -TDL (p))

= {by Ax. 11}

(l ' u ;Tp(a)* ;T^L(p) + r u ; T P (a) * ; ^ L (P))

• (l ' u ; r P (a) * ; T i , L (p) + l ' u ; T p (a r ;2£ L (p))

= { by Ax. 2 and BA }

u l -u l
= {byBA}

ul-

100 Algebraization of Non-Classical Logics

(A6)

T'DLOPVQ " pAq)

= {by def. <-> }
T'DL(((p?)q^pAq) A ((p?) g «- p A q))

= {by defs. —>, <— and T'DL }

(l ' u ; T p (p ?) ; T ^ (g) + (T'DL(p) (?)))

• (l'u;ri,L(p).ri,L(g) + (TP (p?) ;Tf,L (9)))
= {by def. T p }

(i'u;(T ibL(p)-i'u);ri, i(9)+ (TbL(p).ri,L(g)))

• (r u ; T i , L (P) - 3 ^ L (g) + {{T'DL{p).V^T'DL{q)))

= {by r j , L (p) right-ideal}

(l 'u ^ (p) - T ^ (g) + {T'DL (p) - T ^ (g)))

• (vu;T'DL(p)-T'DL(q) + (T'DL (p) -T'DL («)))

= {by Ax. 2}

l 'u; (TP(p?);rDL(q) + (TP (p?) ^ (9)))

• l 'u; (T p (p ?) ; r ^ (g) + (TP(p?) (?)))

= {byBA}

u l -u l
= {byBA}

ul-

(A7)

T'DL{[**]{p^[*\p)^{p^[a*\p))

= l'u;l'u;rP(a*);ru;l'u;Ti,L(p)+l'u;Tp(a);l'u;Tf, i(p)

+ ru;T^(P) + Vv;TP(a*);Vv;TgL~{p)

= Vu;Tp(a*);Vu;T'DL(p) + VU;TP (a) ;TDL (p)

+ r u ; T ^ M + l ' u ; T p (a *) ; T ^ y (by Thm. 2.3.19)

= Tp (a*) ; (T ^ (P) • TP (a) ; T ^))

+ 1 ' u S + l 'u ;Tp(a*) ;T^ L (p) . (by Thm. 2.3.19)

Interpretability of Propositional Dynamic Logic in FL 101

Now,

Tp(a*);(T'DL(p)-TP(a);T^))

+ 1 ' U ; 3 L I (P) + l ' u ; r P (a *) ; 2 ^ P = u l

iff (by elementary Boolean algebra)

TP (a*) ;T^Jp) < TP (a*) ; (T'DL(P) • T P (a) ; T ^)) + l ' u ; T ^)

iff (by properties of right-ideal relations)

TP (a*) ;Tf,L(p) ;1;1 < T P (a*) ; (T J , L (p) ;1;1 • TP (a) ;T'DL(p) ;l;l)

+ l ' u ; T ^ L (p) ; l ; l

iff (by properties of right-ideal relations)

TP (a*) ;T j , L (p) ; l ; l < TP (a*) ; (T'DL{p)-\-l • TP (a) ;T'DL(p) ;l;l)

+ l ' u ; r f , L (p) ; l ; l .

If we call q the term Tp L (p) ; 1, the last equation is equivalent to

TP (a)* ;q;l < TP (a)* ; (^T • TP (a) ;q;l) + q;l,

which is an instance of Ax. 12 in Def. 6.24.
(A8) That T'DL([a](p - > ?) - > ([a]p -> \a]q)) = ul, follows from the proof
of Thm. 6.8.

If the proof has length greater than 1, then p was obtained by applying
either modus ponens or generalization. That these rules preserve provability
in fork algebras was already proved in Thm. 6.8.
•4=) Let us assume that \~CFL TDL(<P), but \/DL ¥• Then there exists a
dynamic model 97? = (W,T,6) in which <p does not hold. By applying
Lemma 6.3, from 971 we can construct a closure fork model T = {21, m)
satisfying:

dom (m (TDL (<£>))) = T(</>) .

Since ip is not valid in 9Jt, must be r(ip) =£ W, and thus, there exists
an element from W which is not in dom (m(TD/,(v?))). Then, in 21, the
equation TOL((P) = 1 does not hold, and thus it is not provable, which
leads to a contradiction. •

file:///~cfl

102 Algebraization of Non-Classical Logics

6.8 The Fork Logic FL'

The logic FL' (to be used in the remaining part of this chapter) is related
both to FL and to ETFR, as follows from the definitions to be presented
next.

6.8.1 Syntax of FL'

We will assume that there are infinite disjoint sets UreVar and CompVar
such that IndVar = UreVarU CompVar. Intuitively, variables from UreVar
will range over urelements, while those in CompVar will range over arbi­
trary elements in the base of fork algebras.

Given a set of constant relation symbols P, we define the set of formulas
of the logic FL' (denoted by ForkFor(P)) as the set

{t1Rt2 : tut2 G IndTerm(<t), 0)* and R G RelDes(P) } .

Notice that any set P of constant relation symbols determines a lan­
guage. These languages will be referred to as fork languages. We will
denote the fork language on the set of constant relation symbols P by
C{P).

Notice also that the formulas in C(P) correspond to a subset of the
atomic formulas in ForETFR{$,$,P) (cf. Def. 5.6).

6.8.2 Semantics of FL'

Because of the relationship between C{P) and ForETFR(%,$,P), the se­
mantics of FL' is naturally defined. For example, an adequate structure for
C(P) will be an adequate structure for ETFR(0,0, P) as defined in Def. 5.11.
In a similar way, the notion of model follows Def. 5.14. Since the language
of FL' is simpler than the language of ForETFR(%, 0, P), we will present a
simplified version of the definition of ETFR model that we will use in the
remaining part of the chapter.

Definition 6.27 A fork model for a language C{X) is a structure T =
{21, m) such that

(1) 21GSPFAU,
(2) m : RelVar U X —> A is the meaning function, and
(3) m(l') = Id.

The Fork Logic FL' 103

Clearly m extends homomorphically to a function m' : RelDes(X) —> A.
For the sake of simplicity we will denote both m and m' by m. Notice that
in particular m(0) = 0 and m(l) = V, the greatest relation of the fork
algebra 21. Notice that the class of FL' models corresponds to SPFM.

The notion of valuation differs from Def. 5.12, though. This is due to
the partition of IndVar into the sets UreVar and CompVar.

Definition 6.28 Given T = (2l,m) e SPFM, a valuation over T is a
mapping v : IndVar —* U& satisfying

(1) v(x) G Urel% if x £ UreVar,
(2) v(x) £ U% if x G CompVar.

Every valuation i/ extends homomorphically to a mapping v' : IndTerm —•
£/<a- We will denote both u and u' by ZA

The notion of satisfiability of a formula by a valuation is just a simpli­
fication of Def. 5.15

Definition 6.29 A fork formula t\Rt2 is satisfied in T = (21,m) G
SPFM by a valuation v (denoted by T,v \=FL' tiRt2) if (Vv(ti),Vv(t2)) e
m(R).

Definition 6.30 A fork formula tiRt2 is true in T € SPFM (denoted by
T \=FU t\Rt2) if f° r every valuation v, T, v \=FL' t\Rt2-

Definition 6.31 A fork formula t\ Rt2 is valid in FL' (denoted by \=FU
t\ Rt2) if it is true in every F e SPFM.

This notion of validity extends in a natural way to sequences of formulas

7i» 72,--•, Ik-

Definition 6.32 A sequence of formulas 71,72, • • •, 7fc is valid if for every

fork model T and every valuation v over F, there exists i, 1 < i < k, such

that T, v \=FU -a.

Finally, given sequences of formulas T i , . . . , Tn, we define:

Definition 6.33 The family of sequences of formulas (rj)i<j<n is valid
if for all i, 1 < i < n, the sequence Tj is valid.

104 Algebraization of Non-Classical Logics

6.9 A Rasiowa-Sikorski Calculus for FL'

The original Rasiowa-Sikorski proof system presented in [H. Rasiowa et
al. (1963)] refers to the classical predicate logic. The system is designed
for verification of validity of formulas of this logic. It consists of a pair of
rules for each propositional connective and each quantifier. Every pair of
rules, in turn, consists of a 'positive' rule and a 'negative' rule. A positive
(resp. negative) rule exhibits the logical behavior of the underlying connec­
tive or quantifier (negated connective or negated quantifier). For example,
the rules for conjunction are the following.

T,aAf3,A (PA)
T,a,A r , /? ,A

r , i (t t A / ?) , A (NA)
T.-.a.-./J.A

The system operates in a top-down manner. Application of a rule re­
sults in the decomposition of a given formula into the formulas that are
the arguments of a respective connective or quantifier. In general, the
rules apply to finite sequences of formulas. To apply a rule we choose
a formula in a sequence that is to be decomposed and we replace it by
its components, thus obtaining either a single new sequence (for 'or'-like
connectives) or a pair of sequences (for 'and'-like connectives). In the
process of decomposition we form a tree whose nodes consist of finite se­
quences of formulas. We stop applying rules to the formulas in a node
after obtaining an axiom sequence (appropriately defined) or when none
of the rules is applicable to the formulas in this node. If the decompo­
sition tree of a given formula is finite, then its validity can be syntacti­
cally recognized from the form of the sequences appearing in the leaves
of the tree. In the present section we define a Rasiowa-Sikorski style sys­
tem for the fork logic FL'. In [R. Maddux (1983)] Maddux presented a
sequent calculus for relation algebras. The system we present here is an
extension of the proof system presented in Orlowska [E. Orlowska (1988);
E. Orlowska (1995)]. The system consists of a positive and a negative de­
composition rule for each relational operation from the language of fork
logic, and also of specific rules that reflect properties of the injective func­
tion * and the relational constant 1'. This calculus can be considered a

A Rasiowa-Sikorski Calculus for FL' 105

proof system for fork algebras in the sense that whenever we want to prove
an equation R = l, it suffices to prove in the calculus the formula xRy.

6.9.1 The Deduction System for FL'

In this subsection we will present the rules of the sequent calculus FLC for
the fork logic FL'. Since we are dealing with fork algebras with urelements
(required in order to interpret first-order theories), the calculus we present
is more involved than a calculus for fork algebras when no assumption is
done on the existence of urelements.

T,xR+Sy,A (P +) £,xii+5y,A (N+)
T,xRy,xSy,A T,xRy,A T,xSy,A

T,xR-Sy,A (P-) r,xfl^Sy,A (AT-)
T, xRy, A T, xSy, A T, xRy, xSy, A

T,xR;Sy,A (P;) _ r,xR^Sy,A_ _ (AT;)
r,xRz,A,xR;Sy T,zSy,A,xR;Sy r,xRzx, z^Sy, A T,xRz2,z2Sy,A

T, x%, A (N~)
r,xRy,A

V,xRy,A (P") T,xRy,A (AT)
T, yRx, A T, yRx, A

T,xRVSy,A (PV)
r,!/l'u*i;,A,a;i{VS!/ V,xRu, A,xRVSy T,xSv, A,xRS7Sy

T,xRVSy,A (iVV)
r,y0'ui *vi,xRui,xSvi, A F,y0'u2 *V2,xRu2,xSv2,A
T,y0'u3 *V3,xRu3,xSv3,A T,yQ'u4 *V4,xRu4,xSv4,A

r,x1*x2Vyi*y2,A (PV) r,ii*x20'i/l*V2,A (NV)
T.xiTyi.A r,x2l'y2,A r,xiO'j/i,x20'y2,A

T,:

r,

r,xi

r,xPy,A
vl'z,xRy, A F,zRy,xRy,A

T, xRy, A
xRz,xRy,A T,zV

T,xVy,A
T,yVx,A,xVy

T,xVy,A
'z,A,xVy T,zVy,

V,xVy,A

y,xRy,A

(Sym)

I
A,xl'y

(l'»)

(1'6)

[Trans)

l (Cut)
r, x * uVy * v, A, xVy T,x* uO'y *v,A,xl'y

L_(tf)
r .xl 'y

106 Algebraization of Non-Classical Logics

In rule (P;), z G IndTerm^ is arbitrary. In rule (N;), z\ G UreVar
and Z2 G CompVar. In rule (PV) , u, v G IndTerm are arbitrary. In
rule (iVV), ui,U2,vi,V3 G UreVar and W3,U4,W2,̂ 4 G CompVar. In rules
(l ' a) and (l'&), z G IndVar is arbitrary. In rule (Trans), z G IndTerm is
arbitrary. In rule (Cut), u, t; G IndTerm are arbitrary. Finally, in rule (£/),
x G Ure Var and w G IndTerm \ Ure Var.

Definition 6.34 A fork formula t\ Rt2 is called indecomposable if it sat­
isfies either of the following conditions.

(1) R G RelVar U RelConst,
(2) R = 5 and 5 G i?e/Var U RelConst,
(3) i ?G{ l ' , 0 ' } .

Definition 6.35 A sequence of formulas T is called indecomposable if all
the formulas in T are indecomposable.

Definition 6.36 A sequence of formulas Y is called fundamental if either
of the following is true.

(1) r contains simultaneously the formulas tiRt2 and tiRt2, for some
ti,t2 £ IndTerm and R G RelDes.

(2) r contains the formula tVt for some t G IndTerm.

Definition 6.37 Let T be a tree satisfying:

(1) Each node contains a finite sequence of fork formulas.
(2) If the sequences of fork formulas Ai , . . . ,A / t are the immediate

successors of the sequence of fork formulas T, then there exists an
instance of a rule from FLC of form

r
Ai A2 ••• Afc '

Then, T is a proof tree.

A branch in a proof tree is called closed if it ends in a fundamental
sequence.

Definition 6.38 A formula tiRt2 is provable in the calculus FLC iff
there exists a proof tree T satisfying:

t in order to simplify the notation, from here on we will refer to the set /n<2Term(0,0)*
by IndTerm.

A Rasiowa-Sikorski Calculus for FL' 107

(1) T is finite,
(2) h Rt2 is the root of T,
(3) Each leaf of T contains a fundamental sequence.

6.9.2 Soundness and Completeness of the Calculus FLC

Theorem 6.12 The calculus FLC is sound with respect to FL'.

Proof The proof proceeds in two steps. First, we prove that for any rule
the upper sequence of the rule is valid if and only if all the lower sequences
are valid. This property of the rules will be referred to as their admissibility.
Once the first step is established, the second step is an induction on the
structure of the proof tree as follows:

(1) If the tree has height 1 (i.e., the root is a fundamental sequence),
then it is trivially valid.

(2) Assume that if the tree has height less than or equal to n, then the
fact that all leaves contain fundamental sequences implies that the
sequence in the root is valid.

(3) Let T be a tree with height n + 1. If the transition from the root
to the nodes in the first level was obtained applying a rule 72. of the
form

r
ri r2 ... rfc'

let us call Ti (1 < i < k) the subtree of T with root IV Since for all
i the height of Ti is less or equal than n and all the leaves contain
fundamental sequences, the root of each Ti must contain a valid
sequence. Since rules preserve validity in both directions, then the
sequence T must be valid, as was to be proved.

Let us show as an example that the rule (PV) is admissible. The
admissibility of the remaining rules is proved in a similar way.

Let us consider a sequence of fork formulas T, t\ RVSt2, A from a lan­
guage C(X). Let M = (21, m) be a fork model, and let i / b e a valuation
over M.

IiAi,v \=pi' T,tiR'VSt2, A, then the following three possibilities arise:

(1) M, v \=FL, 7, with 7 e T,
(2) M,v \=FL, 8, with 8 € A,

108 Algebraization of Non-Classical Logics

(3) M,v\=Fi/hRVSt2.

If (1) or (2) are true, then it is immediate that the three sequences in
the lower part of the rule (PV) are satisfied in the fork model M. by the
valuation v. If (3) is true, then, since the fork formula tiRVSt2 is repeated
in the three sequences in the lower part of the rule, then these sequences
are also satisfied in the fork model M. by the valuation v.

On the other hand, if

- M,v\=FL> r,t2Vu*v,A,t1RVSt2,
- M,u \=FL' T,tiRu,A,tiRWSt2, and
- M,V\=FU T,tiSv,A,tiRWSt2,

then the following four possibilities arise:

(1) M, v \=FU 7 w i t r i 7 G T,
(2) M,v\=FL> 5 with 8 £ A,
(3) M,v\=FL>hRVSt2,
(4) M,u \=FL' t2Yu*v, fffl,v \=FL' tiRu, and 9Jt,v \=Fy t\Sv.

If (1), (2) or (3) are true then clearly the sequence of fork formulas
r , t\RVSt2, A is satisfied in the fork model M. by the valuation v. If (4) is
true, then, by definition of fork (Def. 3.1), M,v \=FL' tiRVSt2 and thus,
M,v\=FL>T,t1RVSt2,A. •

Definition 6.39 A proof tree T of a sequence of formulas T is called
saturated if, intuitively, all the applicable rules were applied in the open
branches. Formally speaking, a proof tree of T is called saturated if for
every open branch B, the following conditions are satisfied:

(1) If xR+Sy e B, then both xRy S B and xSy € B by an applica­
tion of rule (P +) .

(2) If xR+Sy £ B, then either xRy e B or xSy e B by an application
of rule (N +) .

(3) If xR-Sy S B, then either xRy 6 B or xSy £ B by an application
of rule (P-).

(4) IixR-Sy £ B, then both xRy £ B and xSy £ B by an application
of rule (N-).

(5) If xRy £ B, then xRy £ B by an application of rule (N~).
(6) If xR;Sy £ B, then for all t £ IndTerm, either xRt £ B or

tSy £ B by an application of rule (P;) .

A Rasiowa-Sikorski Calculus for FL' 109

(7) If xR;Sy £ B, then for some z G IndVar both xRz G B and
^iSy G -B by an application of rule (N;).

(8

(9
(10

(11

(12

(13

(14
(15

(16

(17

(18

(19

If xRy G B, then yRx G B by an application of rule (Pv).

If xRy G B, then yRx 6 B by an application of rule (iVv).
If re * yVu * v G B, then either arl'u G B or yVv G 5 by an
application of rule (PV).
If a; * yO'u * v £ B then both zO'u G 5 and ?/0'w G B by an
application of rule (NV).
If rcRj/ G 5 , then for all z G IndVar either xV z £ B or zi?y £ -^
by an application of rule (1'0)-
If xRy G B, then for all z G IndVar either xiJx £ B or zVy £ B
by an application of rule (l ' t) .
If xV y G B, then y 1' a; G B by an application of rule Sym.
HxVy £ B, then for all z G IndTerm either s F z e B o r z l ' t / e f i
by an application of rule (Trans).
If xVy £ B, then for all u, v £ IndTerm either x-kuVy-kv £ B or
x * u0'y • v G -B by an application of rule (Cut).
If xRV Sy G B, then for all u,v £ IndTerm one of the formulas
y l ' u * u , xi?u or z 5 v is in B by an application of rule (PV) .
HxRVSy £ B, then there are u,v £ IndVar such that the formulas
yWu*v, xRu and xSv are in B by an application of rule (NV).
For all x £ UreVar and y £ IndTerm \ UreVar, xVy £ B by an
application of rule (U).

Definition 6.40 Given X C RelConst, we define the order of i? G
RelDes(X) (denoted by o(R)) by the conditions:

(1) o(R) = 1 if R £ RelConst U RelVar U {1'},
(2) 0(B) = o(S) + 1 if R = S or # = S,
(3) o(£) = max { 0(5), o(T) } + 1 if R = S+T, R = S-T, R = S;T, or

Theorem 6.13 The calculus FLC is complete with respect to FL', i.e.,
if a formula tRt' is valid in FL', then it is provable in FLC.

Proof Assume tRt' is not provable in FLC. Then, no proof tree exists
that provides a proof for tRt'. In particular, no saturated tree with root
tRt' provides a proof. Therefore, if T is a saturated tree, there must exist
an infinite branch B in T.

110 Algebraization of Non-Classical Logics

Let = be the binary relation on IndTerrn defined by

x = y <=*> xVy fi B .

Let us prove that = is an equivalence relation.
Since for all t G IndTerrn tVt £ B (otherwise B would contain a fun­

damental sequence), = is reflexive.
If ti,t2 G IndTerrn satisfy t\ = t2 (or equivalently til't2 ^ B), then

t2 = t\. Otherwise, if t2Vti G B, then, by application of the rule (Sym)
t\ V t2 G B, which is a contradiction.

If t\ = t2 and t2 = t$ (tiVt2 £ B and t2Vt3 £ B), let us show that
t\ = t3. If ti ^ t3, then til '£3 G B. Thus, by one application of the rule
(Trans) either t\ Vt2 G B or t2 V t3 G B, which is a contradiction.

Let 21 be the FullPFA with underlying domain {|a:| : x G IndTerrn } and
pairing function * defined by |x |* |y | = |x*i/| . If |:ci| = \x2\ and \yi\ = \y2\
then must be \x± *yi\ = \x2 *y2\. Otherwise, if \xi *y\\ ^ \x2 *y2\, then
xx*yiY x2*y2 G B. Applying rule (PI ') either x\Vx2 G B or y\Vy2 G B,
which is a contradiction. Then, * is a well-defined function.

Let us check that * is injective. If |*i|*|£2| = |*3|*|*4| then, by definition
of*, |ti*t2 | = |t3**4|. Thus,«i*t2l'*3**4 £ B. If\ti\ + |t3 J then ti 1't3 G B.
Applying the rule (Cut) either £1 * t2 V t3 * £4 G B or tx * t20't3 * £4 G B.
Since ti * t2Yt3 -kt4 £ B, then ti * £20'£3 * t 4 £ B. Applying rule (AT)
yields that tiWtz G B, thus 5 would be a closed branch, which contradicts
our assumptions. We then conclude that \t\\ = |*31- In a similar way we
prove that \t2\ = | t j | .

Notice that Urel<n = { |a;| : x G UreVar }, because if \x\ = \t* \t2\ then
|a;| = |ij *£2 | . Then, x l ' t i *t2 £ B. By applying rule (U) we arrive at a
contradiction. Thus, 21 G SPFAU.

Let us define, for R G RelVar U RelConst,

<|*i|,|*2|> G m(/2) <̂ => tiRt2$B.

Let us check that m is well defined. Let us see that whenever t\ = £3 and
t2 = t4, if (|*i|,|t2|> e m(R) then <|t3|, |*4|> G m(fl). Since (|ti | , | i2 |) €
m(R), hRt2 <£ B. If (|i3|,|i4|) $ m(R), then i3fl*4 G B. Applying
rule (l ' a) implies that either t3Vti G B or tx i? i4 G 5 . If t 3 l ' t i G 5 ,
applying rule (Sym) implies that t\Yt3 G B. Since i i l '*3 ^ B, then
£1 .Rtj G B. Applying rule (l'j,) implies that either £1 i?£2 G B or £41' t2 G B.
If t±Vt2 G 5 , one application of rule (Sym) would imply that t2Vt4 G B,

A Rasiowa-Sikorski Calculus for FL' 111

which is not the case. Thus, t\ Rt2 G B which also leads to a contradiction.
We have then shown that (|t3|, \t4\) G m(R).

Therefore the structure M = (21,m) belongs to SPFM.
Let v be the valuation defined by u(x) = \x\, for x G IndVar. Let us

show by induction that Vv{t) = \t\ for all t G IndTerm. By definition it
is true for variables. If t = ti * t2, Vv(t) = Vu(t\ * t2) = Vv{t{) * Vv(t2) =

| t i | * | i 2 | = |*i*<2|-
Let us define

S = {a G ForkFor : M, v \=FL> a A a € B} .

Notice that since tRt' is valid, M, v \=py tRt', and thus 5 ^ 0 . Then,
since the set S is well-ordered by o, by Zorn's lemma S has a minimum
element a'.

Notice that a' cannot have the shape til '^2 because, since a' G S,
%v \=FL' t\Vt2. Then, it must be \t\\ = \t2\, which implies tiVt2 £ B, a
contradiction.

Notice also that a' cannot have any of the following shapes:

t\Rt2, t\Rt2, tiRt2,
t\R-\- St2, tiR-\- St2, t\R' ot2,
t\R-St2, t\R\St2, t\R\St2,

because in any of this cases a formula a" appears in S satisfying o(a") <
o(a'), contradicting the minimality of a'.

If a' = tiR;St2, by definition of the saturated tree there exists a level
in B in which we have a derivation with shape

iy.aMV (P;)
ri',tifiz,r2

/
)a' ri',z5t2,r2

,
la

/

and z satisfies M,v \=FU t\Rz and M,v \=FU zSt2. Therefore, there
exists a" G S with o(a") < o(a').

If a' = t\ RVSt2, by definition of the saturated tree there exists a level
in B in which we have a derivation with shape

iy,aMy (PV)
Ti,t2Vu-kv,r2',a' rY.ti-Ru.lY.a' r i ' , t i 5 v , r 2 ' , a '

and u and v satisfy M, v \=FU h 1'u*v, M, v \=FU t\Ru, and M, v \=FL'
t2Sv. Therefore there exists a" G S with o(a") < o(a').

112 Algebraization of Non-Classical Logics

From the previous arguments, it follows that a' must be indecompos­
able.

If a' = tiQt-2 for some Q e RelVar U RelConst, and £1,^2 S IndTerm,
then, since M,,v \=FU a''> (l^ili K2I) € m(Q), but this is so if and only if
(by definition of m), t\Qti ^ 5 , which leads to a contradiction.

If a ' = t\Qti for some Q € RelVar U RelConst, and £1,̂ 2 G IndTerm,
then, since A4,i/ |=FL' a', (|*i|,|£2|) ^ "i(<5) or, equivalently, tiQt2 € 5 .
Since t\Qti £ B too, B is closed, which is a contradiction.

If a ' = £i0't2 for t\,t2 € IndTerm, then, since .4, t> |=FL' a', (\t\\, \tz\) €
m(O'), and thus \ti\ ̂ |£2|. This implies that ii l '^2 G -B and also that B is
closed, which is a contradiction. •

6.9.3 Examples of Proofs in the Calculus FLC

As an exercise let us show that some valid properties of fork algebras are
provable in the calculus FLC. As a general practice we will sometimes
omit some formulas when passing from a level to the level below, provided
the formulas are not required to obtain the fundamental sequences. This
will not affect the soundness of the calculus, and will simplify reading the
proofs.

Let us prove that (RVS) ; (TVQ)" < R;f • S;Q. In order to start
the derivation, we need first to convert the formula into an equation of the
form t = 1. Notice that in general, R< S <=> # + S = 1. Then,

x(flVS) ; (TVQY + R\f-S-Qy (P+)

x(RVS) ; (TVQTy,xR;f-S;Qy (AT;)
xRVSzi, zi {TVQYy,xR;f-S;Qy xR~VSz2,z2(TVQyy,xR;f-S;Qy

In the sequence S j , z\ € UreVar, while in £2; zi S CompVar. Let us
analyze each sequence.

If we apply the rule (iVV) on sequence £1, then we obtain the following
four sequences

(1) z\0''ui-kvi,xRui,xSvi,z\{TVQyy,xR;T-S;Qy, with u\ and V\
from UreVar,

(2) ziO'v,2*V2,xRu2,xSv2,zi(T'VQyy,xR;T • S;Qy, with u2 from
UreVar and v2 from CompVar,

A Rasiowa-Sikorski Calculus for FV 113

(3) zi0 'u3 * v3,x~Ru3,x'Sv3,z1(TVQyy,xR;f-S;Qy, with u3 from
Comp Var and v3 from Ure Var,

(4) ziQ'ui*v4L,x~Rui,xSvi,zi(T'VQyy,xR-,f-S-,Qy, with the indi­
vidual variables u^ and U4 from CompVar.

Any of the four branches is closed by applying the rule (U) once in each
branch, adding the fork formula z\V Ui *Vi, 1 < i < 4.

Regarding branch S2, applying rule (iVV) we obtain (as with Si) the
following four sequences

(1) Z20,ui*vi,xR~ui,xSvi,z2{TVQYy,xR;T-S;Qy, with u\ and v\
from UreVar,

(2) z20'u2 * v2,xRu2,xSv2,z2(TVQyy,xR;T-S;Qy, with U2 from
UreVar and «2 from CompVar,

(3) z20'u3 * v3,xRu3,xSv3,z2(T
J\/Qyy,xR;T-S;Qy, with W3 from

CompVar and V3 from [/reVar,
(4) -z20'u4 *V4,xRu4,xSv4,z2(TVQyy,xR;T-S;Qy, with the indi­

vidual variables U4 and V4 from CompVar.

We then proceed in the same way with the four branches, as follows.

z2 0'ixj * «j, XR~Ui,xSvi, 22 {TVQYy,xR;f-S;Qy (AT)

Z20,Uj •kvi,xRui,xSvi,yTVQz2,xR;T-S;Qy (l'i,)
Z20'ui *Vi,xRui,xSvi,yTVQui •kvi,yTVQz2,xR;T-S\Qy Z2Q,Ui*vi,ui*viVz2
- „ < „ '

S 3 S4

Regarding branch £4, we have

z20'v-i * Vi,Ui *VjVz2 {Sym)
Z20

,Ui *Vi,Z2VUi -kVi

The last sequence is clearly fundamental, and thus the branch is closed.
Regarding branch S3, we proceed as follows.

Z2WUi*Vi,xR~Ui,x~Svi,yTVQui*Vj,yTVQz2,xR-,f -S-,t2y (JVV)
xRuj,xSvi,Ui *VjO'rj *Sj,yTrj,yQsj,xR;T-S;Qy (P-)

xRui,u*ViO'rj * sj,yTrj,xR;Ty xSvi,Ui *ViO'rj * Sj,yQsj,xS;Qy
' v ' > v '

Since none of the sequences £5,;^ or ^e,ij are closed, we will derive a
closed tree for each sequence. For the sequences S5 i,j we have:

114 Algebraization of Non-Classical Logics

xRui,Ui -kViOWj -k Sj,yTrj,xR;Ty (NV)

xRui,UiO'rj,ViO'Sj,yTrj,xR;Ty (P;)

UjOWj^Tr^Uify (Pv)

UjOfr^yTr^yTuj (Vb)

xRui,xRui yTui,yTui UiO'rj,UiV rj

Finally, for the sequences ^6,i,j we have:

xSvi,Ui -kViO'rj * Sj,yQsj,xS;Qy (NV)

xSvi,ui0
,rj,vi0':Sj,yQsj,xS;Qy (P;)

ViO,s,yQs,viQy (P")

ViWs,yQs,yQvi (Vb)

xSvi,xSvi yQvi,yQvi Uj 0' Sj, Wj 1' Sj

Let us now prove the other inclusion, namely that

R-f • S;Q<{RVS)-(TVQT .

xR;f • S;Q + (RV S) ; (TVQ) '» (P +)

xR;f • S;Qy,x(RVS) ;(TVQYy (N•)

xR;fy,xS;$y,x(RVS) ;(TVQYy (N;)

i f l t i i . u i T y , x S ; Q y , x (R V S) ;(TVQTy x~Ru2,u2fy,xS;Qy,x{RVS) ;(TVQ)"y

In the sequence ©i, «i G UreVar and 1*2 € CompVar, We will proceed
the derivation with ©i, since the same steps can be applied indistinctly to
©2.

xRui,u1fy,xS;Qy,x(RVS);(TVQyy (N;)

x~Rui,uxfy, x'5v1,v1$y, x(RV S);(TVQ)"y xR~u1,u1fy,x'Sv2,V2$y,x(RVS);(TVQ)''y

In sequences ©3 and ©4, v\ £ UreVar and V2 £ CompVar. We will
proceed the derivation with ©3, although the same steps apply to sequence

©4-

A Relational Proof System for Intuitionistic Logic 115

xRu1,ulfy,x'Svx,vlQy,x(RVS) ; (rVQ)"y (AT)

x~Ru1,yTu1,x~Svl,v1Qy,x{RV S) ;(TVQ)"y (AT)

i g m . y T m . g ^ x . y ^ ^ ^ V S J K r V Q r y (P;)

xi?u1)a;5wi,x(i?V5)wi *ui yTui,yQv\,u\ *vi(TVQYy
v v ' y v '

e5 e6

Since both sequences Q5 and ©6 are not fundamental, we will proceed
with the derivation. For sequence 65 we have:

xRui,xSvi,xR^7Sui*v± (PV)
ui*v\Vu*vi xRui,xRu\ xSv\,xSv\

The last sequences are all fundamental.
Finally, for sequence &e we have:

yTui ,yg i) i ,u i*Bi(TVQ)" i) (FQ

y f u i , y q « i , y r v g u i * « i _ (PV)
ui • «i 1'ui * V! yTui,yTui yQvi,yQvi

6.10 A Relat ional Proof Sys tem for Intui t ionist ic Logic

In this section we prove interpret ability of intuitionistic logic in the fork
logic FL' and extend the proof system FLC to a relational proof system
for intuitionistic logic.

6.10.1 Intuitionistic Logic

The syntax and semantics of the intuitionistic logic (Int) are defined as
follows.

Definition 6.41 The alphabet of Int is given by:

(1) an infinite countable set of propositional variables, that will be
denoted by PropVar,

(2) the set of propositional connectives { -1, V, A, —> }, and
(3) the set of auxiliary symbols { "(", ",", ")" }.

Definition 6.42 The set of intuitionistic formulas (denoted by IntFor)
is the smallest set satisfying

116 Algebraization of Non-Classical Logics

(1) PropVar C IntFor,
(2) lia,(3& IntFor, then {(->a), {a V/3), (a A /?), (a - • j3) } C intfbr.

Definition 6.43 An intuitionistic model is a triple (W,R,m) in which

(1) W^9,
(2) i? C W x W is a reflexive and transitive relation,
(3) m : PropVar —> P (W) satisfies the heredity condition given by:

If wRw' and u> € m(p), then w' G m(p) .

Definition 6.44 Let 3 = (W, R, m) be an intuitionistic model. A for­
mula a is satisfied in a world u; € W (denoted by 3, w \=[nt «) if the
following conditions are satisfied:

a = pi £ Prop Var :

3, w \=int Pi iff w G m(pi) .

a = -./? :

3, «> h/nt -/? iff (W G W) (wi?w' =* 3, w' ¥Int /?) .

a = /?V7 :

3, w |=/™t P v 7 iff 3, IU |=/nt /3 or 3, w |=/n t 7 .

a = (3 A7 :

3, w |=/nt /? A 7 iff J, to |=/nt /? and 3, w \=Int 7 .

a = (3 —• 7 :

3 , to |=/„t Z3 -* 7 in?

(W G W) (wRw' and 3, w/ |=/nt /? implies 3, w' (=/nt 7) .

Definition 6.45 A formula a G IntFor is true in an intuitionistic model
3 = (W, # , m) (denoted by 3 \=int a) if, for all w G W, 3, w |=/n t a.

Definition 6.46 A formula is Int-valid if it is valid in all intuitionistic
models.

A Relational Proof System for Intuitionistic Logic 117

6.10.2 Interpretability of Intuitionistic Logic in FL'

In this section we will present a mapping Tj : IntFor —• RelDes that will
allow us to interpret the logic Int in the logic FL'.

Definition 6.47 Let us have a fork language with one constant symbol
R interpreted as an accessibility relation from intuitionistic models. Let us
define the recursive mapping Tj : IntFor —> RelDes as follows:

(1) Ti{pi) = Ri with pi G PropVar and Ri G RelVar.
(2) T/HO =£;!>(<*).
(3) TI(aA(3)=TI(a)-TI((3).
(4) TI(aVp)=TI(a)+TI((3).

(5) TI{a^(3)=R-{TI{a).TI{(3)).

Since the accessibility relation in intuitionistic models satisfies condi­
tions of reflexivity, transitivity and heredity, we will define abstract rela­
tional counterparts of these conditions, as follows:

(CI)
(C2)
(C3)
(C4)
(C5)
(C6)

l'u < R,
R\R S: Ri
(Ri-R) \Ri = 1,
Ri < ul for all i,
Ri;l = Ri for all i,

J 2 < u i ; i u -

(reflexivity)
(transitivity)

(heredity)
(Ri has urelements in its domain)

(Ri is right-ideal)
(R is defined in the set of urelements)

Lemma 6.4 Let 3 = (W,R',m) be an intuitionistic model. Then, there
exists J- = (21, m') € SPFM constructed from 3 satisfying conditions (Cl)-
(C6) such that for all w € W and for all (p € IntFor

3, w \=int if «=> w G dom (m' (Tj(y))).

Proof Define 21 as the FullPFAU with set of urelements W, let m'(R) =
R', and for each Ri G RelVar define m'(Ri) = { (x,y) : x G m(pj) }. Con­
ditions (C1)-(C6) hold in T because of the way m'(R) and m' (Ri) are
defined.

The remaining part of the proof proceeds by induction on the structure
of the formula (p.

118 Algebraization of Non-Classical Logics

cp = pi G Prop Var :

3, w \=Int pi iff w G m(pj)

iff w G dom (m'(Ri))

iff w G dom (m' (T/ (P i))) .

<p — -<a :

3,w h/nt --Q! iff (W G W) (tufl'u/ => a,tw'^/„ t a)

iff (W G W) (wR'w' ^w' <£ dom (m' (7/(a))))

iff 0u>' G W) (twfl'w' Aw' € dom (m' (T/(a))))

iff {$w' G A)((tw,iu') G m'(R)Aw' G dom (m'(T7(a))))

iff u; G dom (m'(tf) ;m'(T/(a)))

iff w G dom (m' (f l ;T/ (a)))

iff w Gdom(m'(r / (- .a))) .

tp = aV P :

3,w \=Int aVP iS3,w \=Int a or J,ty (=/nt /?

iff to G dom (m' (T/ (a))) or u> G dom (m' (T/ (/?)))

iff io G dom (m' (T/ (a)) U m' (T/ (/?)))

iff u; G dom (m' (T/ (a V /?))).

(f = a A /3 : Proceeding along the same lines as we did with V,

3, w \=i„t a A f3 iff w G dom (m' (T/ (a A /?))) .

V? = a —* /? :

3, w \=Int a -> /?

iff (W G W) (w fl'u;' A 3,u/ H/nt P ^ 3,w' |= / n t 7)

iff (V G W) {wR'w' A J, w' \=Int PA3,w' PInt 7)

iff @u>' G W) («>#V Aw' £ dom (m' (Tj (/?))) A

w' $ dom (m'(T/ (7))))

iff (V e A)((iu,iu/) €m' (JJ)A

w' G dom (m' (T, (P)))Aw'$ dom (m' (T7 (7))))

A Relational Proof System for Intuitionistic Logic 119

iff w G dom lm' (R) ; (m' (T/ (a)) -m' (T, (£))) J

iff w G dom fm' (R; (VJ (a) • 2 H 0)))

iff w G dom (m' (7/ (a -> /?))).
a

Lemma 6.5 Let !F = (21, m) G SPFM satisfying conditions (C1)-(C6).
Then, there exists an intuitionistic model 3 = (W,R',m') constructed from
T such that for all w G W and for all <p G IntFor

w G dom (m(Ti(ip))) <=$• 3,w\=Int<p.

Proof Let us define W = Urel^, R' = m(R), and for all pt G PropVar
define m'(pj) = dom (m(Ri)). Notice that by conditions (C1)-(C6), R'
is a reflexive and transitive relation on W, and the heredity condition is
satisfied by m'. The remaining part of the proof proceeds by induction on
the structure of the formula <p.

<P = Pi

(p = ->a :

w G dom (m (Tj(pj))) iff u; G dom (m (Ri))

iff w G m'(pi)

iff 3,10 \=Int Pi­

ll) G dom (m (Tj(-ia)))

iff w G dom (m (R;Tr(a)))

iff w G dom f.R';m(T/(a)))

iff (&// G 4) (wR'w' Aw' £ dom (m (Tj(a))))

iff ($w' £ W) (wR'w' Aw' £ dom (m (7/(a))))

iff (W G W) (wiZ'tu' =• w' $ dom (m (7i(a))))

iff (W G W) (w f l V => 3, v/*i„t a)

iff 3, w \=jnt -ia.

120 Algebraization of Non-Classical Logics

ip = aV f3 :

w G dom (m(T/(a V/3)))

iff w G dom (m (Tr(a)+7/(/3)))

iff w G dom (m (T/(a)) U m (Tj (/?)))

iff w G dom (m (T/(a))) or tu G dom (m (Tj (/?)))

iff J, w |=/n t a o r 3 , w |= / n t /3

iff J,™ \=lntavp.

(p = a A ft

w G dom (m(Tj(a A/?)))

iff w G dom (m (T/(a) -T/(/3)))

iff IU G dom (m (T/(a)) n m (Tj (/?)))

iff tw G dom (m (Tj(a))) and w G dom (m (T/(/3)))

iff 3, iy |=/„t a and 3, w |=/„t P

iff 3,™ \=[nt a A p.

<p = a —> P :

u> G dom (m (Tj (a —> /?)))

iff to G dom (m (R-, fa (a) -T/(y9)) J J

iff iu € dom LR'; (m(T/(a)) •m(T/(/3)))N)

iff (^ ' G W)(wR'w' A t o ' e dom (m(Tj(a)))

A u / g dom (m(Tj(/?))))

iff (W G W^iu^ ' to ' Aw' e dom (m(T/(a)))

=>• «;' G dom (m(T/(/3))))

iff (W G W) (wR'w' A 3,w' \=Int a =• Of, to' |= / n t /?)

iff 3, w f=/nt a —> /?.
a

Let us denote by /C the class of those fork models (21, m) G SPFM where
conditions (C1)-(C6) hold. In the remaining part of the chapter we will
denote by FL the fork logic induced by the class of fork models K. in the

A Relational Proof System for Intuitionistic Logic 121

following way

\=FLK xTy <=> \/M£lC(M f=FZ/ xTy) .

Theorem 6.14 Let ip s IntFor. Then, given individual variables x £
Ure Var and y S Comp Var,

\=int i> <=$• H F L * xTi(ip)y .

Proof Let us prove the contrapositive. If ¥int ip, then there exists an
intuitionistic model 3 = (W,R,m) and w £ W such that 3,w Y"jnt ip.
Then, by Lemma 6.4 there exists a fork model T — (21, ml) e K, such
that w ^ dom (m' (Tj {ip))). Let v be a valuation satisfying u{x) = w, then
F,v¥pLK xTj(ip)y, and thus ¥pyc xTi(ip)y.

li¥pi>c xTj(ip)y, then there exists a fork model T — (21,m) e K.
and a valuation i/ such that {v{x),v(y)) £ m(Ti(tp)). Thus, i^(x) ^
dom (m(Ti(ip))). By Lemma 6.5 there exists an intuitionistic model 3 =
(A, R', ml) such that 3, v(x) Y"int ip, and thus J^/nt 1/;. D

6.10.3 A Fork Logic Calculus for Intuitionistic Logic

In this subsection we will present a calculus for intuitionistic logic based on
the calculus FLC. The calculus will be obtained by adding specific rules
and modifying the notion of fundamental sequence in the calculus FLC.
The calculus will be denoted by Int-FLC.

Throughout this subsection we assume we are working with a fork lan­
guage £(R) with only one constant symbol as in Def. 6.47.

Definition 6.48 A sequence of fork formulas T is Int-fundamental if any
of the following conditions are true:

(1) T is fundamental according to Def. 6.36, or
(2) the fork formula xRx S T for some x G UreVar.

Condition (2) reflects the property that the intuitionistic accessibility
relation R is reflexive on the set of urelements.

We define the intuitionistic calculus Int-FLC by adding the following
specific rules to those of FLC.

T,xRy,A (TranR)
T,xRz,xRy,A T,zRy,xRy,A

122 Algebraization of Non-Classical Logics

T,xRjy,A (H)
T,zRx,xRiy,A T,zRiy,xRiy,A

T,xRiy,A (RI)
T,xRiy,xRiZ,A

T (RUr) T (VarUr)
F,xRy T,xRiy

In rules (TranR) and (H), z G UreVar is arbitrary. In rule (RI),
z G IndTerm is arbitrary. In rule (RUr) either x or y belong to IndTerm \
UreVar, and in rule (VarUr), x G IndTerm \ UreVar. The admissibility
of rule (TranR) is equivalent to the transitivity of the relation R. The
admissibility of rule (H) is equivalent to the validity of the heredity con­
dition. The admissibility of rule (RI) is equivalent to relational variables
being interpreted as right-ideal relations. The admissibility of rule (RUr)
is equivalent to R being defined only on urelements. Finally, the admissi­
bility of rule (VarUr) is equivalent to variables having urelements in their
domain.

Notice that the last comments imply the soundness of the calculus Int-
FLC.

Theorem 6.15 The calculus Int-FLC is sound with respect to the logic
FLK, i.e., given tQt' G ForkFor

\~Int-FLC tQt' => ^FL* tQt' .

Definition 6.49 A proof tree T of a sequence of formulas T is Int-
saturated if in all open branches B, the following conditions are satisfied.

(1) Conditions (1) through (19) from Def. 6.39,
(2) If xRy G B, then, for each z G UreVar, either xRz G B or zRy G

B by an application of rule (TranR).
(3) If xRty G B (Rt G RelVar), then, for each z G UreVar, either

zRx G B or zRty G B by an application of rule (H).
(4) lixRiy e B (Ri e RelVar), then, for all z G IndTerm, xRtz G B

by an application of rule (RI).
(5) For all x,y G IndTerm such that x G IndTerm \ UreVar or y G

IndTerm \ UreVar, xRy G B by an application of rule (RUr).
(6) For all x G IndTerm \ UreVar and y G IndTerm, xRiy G B by an

application of rule (VarUr).

file:///~Int-FLC

A Relational Proof System for Intuitionistic Logic 123

Theorem 6.16 The calculus Int-FLC is complete with respect to the
logic FLK, i.e., given tQt' € ForkFor

\=FLK tQt' = > • \~Int-FLC tQt' .

Proof The proof will follow the lines of the proof of Thm. 6.13, and
therefore the reader will be directed there for some parts.

Assume tQt' is not provable in Int-FLC. Then no proof tree exists
that provides a proof for tQt'. In particular, no /nt-saturated tree with
root tQt' provides a proof. Therefore, if T is an /nt-saturated tree, there
must exist an infinite branch B in T.

Let = be the binary relation on IndTerm defined by

x = y •$=>• xVy ^ B.

The proof that = is an equivalence relation is the same as in Thm. 6.13.
Let 21 be the FullPFAU with set of urelements { \x\ : x £ UreVar} and

pairing function * defined by |a;|*|2/| = |a;*2/|. Proving that * is well defined
and injective is done as in Thm. 6.13.

Let us define, for R' £ RelVar U { R },

(\h\,\t2\) £ m(R') <^=> tiR't2<£B.

That m is well-defined is proved as in Thm. 6.13.
The relation m(R) is reflexive, for if there exists x £ Ure Var such that

(|a;|, \x\) ^ m(R), then xRx £ B. Then B would be a closed branch, which
is a contradiction.

The relation m(R) is transitive, for if there are x\,x2,x-& £ UreVar such
that (|a;i|,|i2|) € m(R), (|x2|, l^l) £ m(R) and (ja;i|, |x3|) ^ m(R), then
xxRx2 $ B, x2Rxs $. B and xxRx3 £ B. Then, applying rule (TranR)
either x\ Rx2 £ B or x2 Rx$ £ B, which is a contradiction.

The heredity condition holds, for if there are xi,x2 £ UreVar and
t £ IndTerm such that (|xi|, |t |) £ m(Ri) (Rt £ RelVar), (\xi\, \x2\) £ m(R)
and (|x2|, \t\) £ m(Ri), then xiRrf <£ B, xxRx2 £ B and x2Rit £ B. Ap­
plying rule (H) either xxRtt £ B or x±Rx2 £ B, which is a contradiction.

In a similar way we show that relational variables are interpreted as
right-ideal relations.

m(R) C Ure Var x Ure Var, for if there is t £ IndTerm \ Ure Var such
that \t\ £ dom (m(R)) or |t| £ ran (m(R)), then applying rule (RUr) we
arrive at a contradiction.

124 Algebraization of Non-Classical Logics

For all Ri G RelVar, dom (m (Ri)) C UreVar, for if there are £ G
IndTerm \ UreVar and *' G IndTerm such that (|t|, |t'|) G m(Ri), then
£i?j£' ^ 5 . Applying rule (VarUr) we arrive at a contradiction.

Therefore the structure (2t,m) belongs to SPFM and satisfies (C l) -
(C6). The remaining part of the proof is similar to the respective part of
the proof of Thm. 6.13. •

From Thm. 6.16 the corollary below immediately follows.

Corollary 6.2 Given a formula <p G IntFor, x G UreVar, and y G
CompVar, we have

\=Int <P < = » \~Int-FLC xTi(cp)y .

Proof From Thm. 6.14, for any formula ip G IntFor, x G UreVar, and
y G CompVar,

him V <^> |=FLK xTj(<p)y . (6.2)

From Thms. 6.15 and 6.16, we then obtain

hFL* xTi(<p)y « = > \~int-FLC xTj{<p)y . (6 .3)

Joining (6.2) and (6.3), we then obtain

hint <P «=*> \~Int-FLC xTl(<fi)y .

•
6.10.3.1 Example

In order to see how the calculus works, let us consider a proof of the in-
tuitionistic tautology ->-i-ia —> ->a. According to Cor. 6.2, it suffices to
prove that \-int-FLC xTi(-i-i-ia —> -*a)y. In order to keep an economic
notation we will not apply the mapping Tj entirely from the beginning, but
by parts according to our needs. Partial applications of mapping Tj will be
evidenced using a rule denoted by (Tj).

xTj(- i - i - ia —* - i a)y (Tj)

zfl; (T/CI-.-.a)-17Fa))y (N;)

xRz\,z\Ti (-i-i-ia) • Tj (-ia) y xRz2,Z2Tj (- m a) • T/ (-ia) y
v v ' v v '

Ai A2

file:///~Int-FLC
file:///~int-FLC
file:///~Int-FLC

A Relational Proof System for Intuitionistic Logic 125

In sequences Ai and A2, z\ £ UreVar and z2 £ CompVar.

Regarding sequence A2, we have

xRz2, gjTj (-.-.-.a) •r f(- .a)y (RUr)

xRz2,Z2Ti(-i-i-ia)-Ti(-ia)y,xRz2

The last sequence is fundamental, and thus the branch is closed.
Regarding sequence Ai, we have

a:flzi,sir,r(-.-1-.a)-rj(-.a)y (N-)

xRz\, ziTj(-<-i-ta)y, ziTi(->a)y (AT-)

gPzi , zi r/(-i-i-ia)j/,^i r/(-iq)y (T»

xf l2 1 ,z i f l ;T f (^c t)y ,z 1 r J (- l q)y (AT)

xflz1,zifl;rJ(-.-1q)i/,ziTJ(-,a)y (7»

xR~z1,z1R;TI{-,^a)y,ziR;TI(a)y (A/;)

x.Rzi,ziP.;7/(-'-'a:)y,ziF-ti,t1T/(q)i/ xPzi , zi.R;T/(-.->q)y, zi P.<2, t2Tr(ct)y
v ' > „ <

A 3 A 4

In sequences A3 and A4, t\ £ UreVar and t2 £ CompVar.
Regarding sequence A3 we have:

xR~zi,z1R;TI(->-,a)y,ziR~tutiTi(a)y (P;)
xRzi,ziRti,ziRti,tiTi(a)y xRzx,t1TI(-i-:at)y,z1Rti,tiTI(a)y

A 5 A 6

Since the fork formulas z j i l t i and z\Rt\ occur in A5, this branch is

closed.
Regarding sequence Ae we have

xR~zi,t1TI(-,-ia)y,z1R~ti,tiTI(a)y (Tr)

xTtzutiR;TI(-«xjy,z1R~ti,tiTI(a)y(N))
xRzi,tiRvi,viTz(-ia)y,ziRti,tiTr(a)y xRzi,tiRv2,v2Ti(->a)y,zi~Rti,t1TI(a)y

„ ' v „

A7 A 8

In sequences A7 and As, Ui € UreVar and v2 £ CompVar.
Regarding sequence A7 we have:

xR~z1,t1R~v1,viTI(-na)y,ziR~tut1TI(a)y(TI)

xTiz1,t1R'vi,viR;TI(a)y,ziR~t1,t1TI(a)y (AT)

xliz1,tiRv1,v1R;Tr(a)y,ziR~h,t1Ti(a)y (P;)
x Rzi, t\ Rv\ ,v\Rv\,z\Rt\,t\Tj (a) y xRz\,t\Rv\,viTj (q) y,ziRti,t\Tj (a) y
' v v •

A9 A10

126 Algebraization of Non-Classical Logics

Since the fork formula viRv\ occurs in A9, this branch is closed.
Regarding sequence Ajo we have (denoting by T the term Ti(a)):

xRz1,tx'Rvi,v1Ty,z1Rtl,t1Ty (H)
x'Rz1,t1~Rvi,t1Rv1,v1Ty,zi~Rt1,tlTy x~Rzi, tt~Rvi, tiTy, viTy, ziSti, tj Ty

A u A 12

Since the fork formulas tiRvi and tiRvi occur in An, the branch is
closed. In a similar way, since the fork formulas tiTi{a)y and t\Ti(a)y
occur in A12, this branch is also closed.

Regarding sequence As, we have:

xRz1,t1Rv2,v2Ti(-ia)y,z1Rt1,tiTI(a)y (RUr)

xRz1,t1Rv2,v2Ti(-^a)y,z1Rti,t1Ti(a)y,tiRv2
v v '

A13

Since the fork formulas t\Rv2 and t\Rv2 occur in A13, the branch is
closed.

Finally, regarding sequence A4 we have:

xRz1,z1R;TI(^a)y,Zl^t2,t2Ti(a)y (RUr)

xRzi,ziR;TI(-^-'a)y,z1Rt2,t2TI(a)y,ziRt2

> w '
A 1 4

Since z\Rt2 and z\Rt2 occur in A14, the branch is closed.

6.11 A Relational Proof System for Minimal Intuitionistic
Logic

Minimal intuitionistic logic J was introduced by Johansson in 1936 [I.
Johansson (1936)]. It differs from intuitionistic logic in that the axiom
-.a -> (a —> /?) is deleted. In [M. Fitting (1969)], Fitting introduced a
Kripke-style semantics for the logic J . A Kripke model for J is a system
97t = (W,R,Q,m) where W is a nonempty set, R is a reflexive and transi­
tive relation on W, Q C W is a i?-closed subset of W (that is, if w S Q and
(w,w') £ R, then w' £ Q), and m is a meaning function which is defined
as being for the Kripke semantics of the intuitionistic logic Int with the

A Relational Proof System for Minimal Intuitionistic Logic 127

exception of the evaluation of negations:

Wl, w \=j ->a iff

for all w', if (w, w') e R, then M, w' ty=j a or w' 6 Q .

Q is to be thought of as the set of those states of information which are
inconsistent. The notion of truth of a formula in a model and validity are
the same as for Int. It is known that a formula a is valid in J iff a is true
in every finite model of J with antisymmetric relation R.

Interpretability of J in fork logic FIl is established by a translation
Tj of formulas of J into relational terms. It coincides with translation T/
except for the translation of negated formulas:

Tj(^a)=R;(Tj(a)-Q)

where R and Q are relational constants interpreted as the accessibility
relation from models of J and the right ideal relation that is a counterpart
of the set Q from these models.

The relational proof system for J (that we will denote by J-FLC) con­
sists of all the rules of the proof system of fork logic, the specific rules for
Int and the following specific rules:

r,xQy,A (Ql)
T,zQy,A,xQy T,zRx,A,xQy

T,xQy,A (Q2)
T,xQz,A,xQy

E (Q3)
T,xQy

In rule (Ql) z £ UreVar, in rule (Q2) z € IndTerm, and in rule (Q3),
x S IndTerm \ Ure Var and y € IndTerm.

Rule (Ql) is admissible iff Q is Jt*-closed, rule (Q2) is admissible iff Q is
a right-ideal relation, and rule (Q3) is admissible iff Q has only urelements
in its domain.

Notice that the abstract fork-algebraic equations

(C7) : Q = QX
(C8) : (R.Q) ;Q = 1,

128 Algebraization of Non-Classical Logics

(C9) : Q < ul ,

state that Q is an i?-closed, right-ideal relation whose domain is made of
urelements.

Let C(R, Q) be a fork language with two constant symbols. Let K,' be
the class of those fork models (21, m) for the language C(R, Q) satisfying
conditions (C1)-(C9). Then KJ induces a fork logic FL as follows:

\=FVz. xTy <=• VM e £ ' (M \=FL. xTy) .

Prom the admissibility of the specific rules (Q1)-(Q3) we obtain the
following theorem on the soundness of the calculus J-FLC.

Theorem 6.17 The calculus J-FLC is sound with respect to the logic
FLK>, i.e.,

I- J-FLC xTy => \=FLK.< xTy .

Definition 6.50 A proof tree T of a sequence of formulas T is J-saturated
if in all open branches B, the following conditions are satisfied.

(1) T is /rai-saturated,
(2) UxQy G B, then, for all z € UreVar, either zQy € B or zRx € B

applying rule (Ql),
(3) If xQy G B, then, for all z G IndTerm, xQz G B applying rule

(Q2),
(4) For all x G IndTerm\ UreVar and y G IndTerm, xQy G B applying

rule (<?3).

Theorem 6.18 The calculus J-Int is complete with respect to the logic
FLK', i.e.,

\=FLK.' xSy => hJ-FLC xSy .

Proof The proof will follow the lines of the proof of Thm. 6.13, and
therefore the reader will be directed there for some parts.

Assume tSt' G ForkFor is valid in FL but is not provable in J-FLC.
Then no proof tree exists that provides a proof for tSt'. In particular,
no 7-saturated tree with root tSt' provides a proof. Therefore, if T is a
J-saturated tree, there must exist an infinite branch B in T.

Let = be the binary relation on IndTerm defined by

x = y «=> xVy £ B .

A Relational Proof System for Minimal Intuitionistic Logic 129

The proof that = is an equivalence relation is as in Thm. 6.13.
Let 21 be the FullPFAU with set of urelements { |x| : x G UreVar} and

pairing function * defined by |z|*|y| = |z*y|- Proving that * is well defined
and injective is done as in Thm. 6.13.

Let us define, for R' G RelVar U { R, Q },

(l*i|,M> G m(R') <=> t1R't2<£B.

That m is well-defined is proved as in Thm. 6.13.
That R is reflexive, transitive and that the heredity condition holds are

all proved as in Thm. 6.13.
Assume that (\w\, \w'\) G m(R), (|tu|,|a;|) G m(Q) and (|to'|,|x|) ^

m(Q). Then, wRw' <£ B, wQx £ B, and w'Qx G B. Applying rule (Ql)
we immediately arrive at a contradiction, and thus m(Q) is m(i2)-closed.

Assume (|x|, \y\) G m(Q), but (|x|,|t|) ^ m(Q) for some t G IndTerm.
Then, xQt G B. Since the tree T is J saturated, applying rule (Q2) we
arrive at a contradiction, and thus m(Q) is right-ideal.

In a similar way we show that relational variables are interpreted as
right-ideal relations.

If there are x G IndTerm\ UreVar and y G IndTerm such that (|x|, \y\) G
m(R), then xRy <£ B. Applying rule (Q3), xRy G B, which is a contra­
diction.

Therefore the structure (21, m) belongs to SPFM and satisfies (CI)-
(C9).

Let v be the valuation defined by v{x) — |rc|, for x G IndVar. In
Thm. 6.13 it is shown by induction that Vv{t) = \t\ for all t G IndTerm.

The remaining part of the proof is as in Thm. 6.13. •

In order to be able to reason in the calculus J-FLC for proving minimal
intuitionistic properties we still need to show the interpretability of the
logic J in the logic FLK .

Lemma 6.6 Let J = (W, R', Q', m) be a minimal intuitionistic model.
Then there exists a fork model F = (21, m ') G SPFM constructed from
J satisfying conditions (Cl)-(C9) such that for all w G W and for all
if € IntFor

Z,w\=j<p «=> w G dom (m' (Tj(<p))) .

Proof Let 21 be the FullPFAU with set of urelements W. Define m'(R) =
R'. Let m'(Q) = {{x,y) :x€Q'}, and for each Ri G RelVar define

130 Algebraization of Non-Classical Logics

m'(Ri) — { (x, y) : x G m(pi) }. Conditions (C1)-(C9) hold because of how
TO' is defined.

The remaining part of the proof proceeds by induction on the structure
of the formula <p and follows the lines of the proof of Lemma 6.4 except
for the case of negation, where the semantics differ. For the negation we
proceed as follows:

iff (W G W) {wR'w' => 3 , 0 ' ^ a V w ' e Q')

iff (W G W) {(w,w') G m'(R) =>

w' £ dom (TO' (Tj(a))) V w' G dom (TO'(Q)))

iff ($w' G W) ((w,w'} G m'(R)A

w' G dom (TO' (Tj(a))) A w' <£ dom (TO'(Q)))

iff ($w' G A) ((w,w') G m'(R)A

w' G dom (TO' (Tj(a))) A w' £ dom (TO'(Q)))

iSw& dom fm'(i?); (TO' (Tj(a)) •m'(Q)))

iff to G dom TTO' r ^ r (? M a) ^ y))

iff io G dom (TO' (Tj(-.a))).

a

Lemma 6.7 LetT = (21,TO) G SPFM, satisfying conditions (Cl)-(C9).
Then, there exists a minimal intuitionistic models = (W,R',Q',m') con­
structed from T such that for all w G Urel^ and for all ip G IntFor

w G dom (m(Tj(<p))) <=> 3,u>\=j<p.

Proof Let us define W = Urel<&, R' = m(R), Q' = dom (TO(Q)), and for
all pi G PropVar define m'(pi) = dom (TO (Ri))- Notice that by conditions
(C1)-(C9), R' is a reflexive and transitive relation on W, the heredity
condition is satisfied by TO' and Q' is an i?-closed right-ideal relation.

The remaining part of the proof proceeds by induction on the structure
of the formula <p and follows the lines of the proof of Lemma 6.5, except
for the case of the negation, where the semantics differ. For the negation

A Relational Proof System for Minimal Intuitionistic Logic 131

we proceed as follows:

w £ dom (m (Tj(^a)))

iff w £ dom (m (R; (Tj{a)-Q)})

iff w £ dom (m(R); (m {Tj(a)) -m(<9)) J

iff (&i/G,4)((w,u/) G m(i?)

A«) ' e dom (m(Tj(a))) A w' <£ dom (m(Q)))

iff (V G W) (wR'w' Aw' £ dom (m (Tj(a))) Aw' <£ Q')

iff (W G W) (wR'w' ^ w' i dom (m (Tj(a))) V w ' e Q')

iff (W G W) (wR'w' ^ 2,w'¥ja\/w' G Q')

iff C,u; |=j -ia.
D

Theorem 6.19 Let ip G IntFor. Then, given x £ UreVar and y £
IndVar,

|=j ^ «=> 1 = ^ , xTj(ip)y .

Proof Let us prove the contrapositive. If)t j tp, then a minimal intu­
itionistic model 3 — (W, R', Q', m) exists and w £ W such that 3, w ¥ ip.
Then, by Lemma 6.6 there exists T = (21, m') £ KJ such that w £
dom (m' (Tj (VO))- Let f be a valuation satisfying v{x) = w, then J7, v ¥FLK'

xTj(i/s)y, and thusKF L ,c xTj(ij))y.
If J^FLK:/ xTj(tp)y, then there exists J7 = (21,m) G /C' and a valuation

v such that (i/(x),u(y)) <£ m(Tj(ip)). Thus, 1/(1) £ dom (m(Tj(ip))). By
Lemma 6.7 a minimal intuitionistic model 3 exists such that 3, v[x) ¥j "ip,
and thus J^j •0. D

Prom Thms. 6.17, 6.18 and 6.19 the corollary below follows immediately.

Corollary 6.3 Given (p £ IntFor, x £ UreVar and y G CompVar,

\=J V <^=> "rj-FLC xTj(ip)y .

Proof From Thm. 6.19, for any formula 95 € IntFor

\=J<p ^ = * \=FL*' XTJ(<P)V • (6 - 4)

132 Algebraization of Non-Classical Logics

Prom Thms. 6.17 and 6.18, we then obtain

\=FLR. xTj(<p)y «=*. ^J-FLC xTj{ip)y . (6.5)

From (6.4) and (6.5),

\=j <P <^=> \-J-FLC xTj(tp)y .

D

6.12 Relational Reasoning in Intermediate Logics

Intermediate logics are the logics whose valid formulas include all the formu­
las that are valid in intuitionistic logic but not necessarily all the tautologies
of classical logic. In that sense these logics are between intuitionistic and
classical logic. For many intermediate logics a Kripke semantics is known.
Below we give examples of conditions that the accessibility relation is sup­
posed to satisfy in Kripke models of some intermediate logics.

(11) 3x\/y{xRy)
(12) \/x3y (xRy A Vz (yRz -> y = z))
(13) Vxiy3z (zRx A zRy A Vt (tRx A tRy -> tRz))
(14) VarNfyVz (xRy A xRz -+ yRz V zRy V Vt (yRt -» zRt))
(15) ViVyVz (xRy A xi?z -» 3t (yi2t A zi?t))
(16) 3xVy (y^x-+ xRy) A MxizVt (xRz A xi2i - • ^zRt)

The translation from formulas of intermediate logics into relational
terms is the same as for formulas of intuitionistic logic. There are three
methods of developing relational means of reasoning for intermediate logics
within the framework of fork logic.

6.12.1 Method 1

We define a specific rule or a fundamental sequence for every condition
on the accessibility relation in the underlying Kripke models of a given
logic. The relational proof system for the logic consists in all the rules and
fundamental sequences from the proof system of fork logic together with
those new specific rules and/or fundamental sequences. For example, the

file:///-j-flc

Relational Reasoning in Intermediate Logics 133

rule corresponding to condition (14) is the following:

T,yRz,zRy,zRt,A (R4)
T,xRy,$,A T,xRz,$,A T,yRt,$,A

where x is a variable.

Proposition 6.1 Rule (i?4) is admissible in fork logic iff in every fork
model the relation R satisfies condition (14).

Proof =$) Notice that condition (14) is equivalent to the following:

VzVyVzVi (zRy A xRz A yRt -» yRz V zRy V zRt) .

Assume that rule (-R4) is admissible and suppose that in some fork model
(21, m) condition (14) is not satisfied. Hence, for some valuation v in this
model we have (v(x),i>(y)) € m(R), (v(x),u(z)) € m(R), (v(y),v(t)) €
m(R), <i/fo),i/(z)) i m(R), {v{z),v{y)) $ m(fl), and (v{z),v(t)) $ m(fl).
Consider an instance of rule (i?4) with T = xRy,xRz,yRt, and with empty
A. Then, all the lower sequences of the rule are valid, so the upper sequence
must be valid as well. But in the above model none of the formulas of the
upper sequence are true under valuation i>, a contradiction.
<=) It is clear that this implication also holds. •

6.12.2 Method 2

We use the following deduction theorem for fork algebras with urelements.

Theorem 6.20 Let 7 and 7' be fork algebra terms. Then,

7 = 1 |=AFAU 7' = 1 <=^ HAFAU 1;T";1 + i = i •

Proof =») If 7 = 1 [=AFAU l' = 1, then, since SAFAU C AFAU,

7 = 1 h=SAFAU 7 = 1 -

Let 21 € SAFAU and m : RelConstl)RelVar -> A be arbitrary. If 21 \= 7 = 1,
then by hypothesis 21 |= 7' = 1. Then

a|=i;r,i + V = i-

134 Algebraization of Non-Classical Logics

If 21 ¥ 7 = 1, then 7 ^ 0 . Then, since 21 is simple (and thus satisfies
formula (2.1)), 211= 1;7;1 = 1. Thus,

21M;7;1 + Y = l-

Then,)=SAFAU 1;7;1 + Y = 1- By Thm. 6.2, we then have

[=AFAU 1;T";1 + 7' = 1 .

<=) Let 2t G AFAU and m : RelConst U RelVar -* A be arbitrary. By
hypothesis 211= 1 ;7; 1 + 7' = 1. Notice that if 211= 7 = 1 then 21 (= 7 = 0,
and therefore 21 \= 1;T";1 = 0. Thus, (=AFAU 1;7;1 + 7' = 1 implies
7 = 1 |=AFAU 7' = 1. •

The proof of the following corollary follows the same steps as the proof
above.

Corollary 6.4 Let 7 and 7 ' be fork algebra terms. Then

7 = iHc7 ' = ui «=> Hcui;7";i + i'u;7/ = ui •

Let L(T) be an intuitionistic logic, where F = { 71, •. •, 7/t } is a finite
set of first-order sentences imposing conditions on the accessibility relation.

Let K-Y be the class of those fork models satisfying the set of equations
{ Tv ,()(7) = 1 : 7 G r } plus conditions (C1)-(C6), and let FLT be the fork
logic induced by the class of fork models K.p.

Lemma 6.8 Let 3 — (W,R',m) be a model for the intuitionistic logic
L(F). Then a fork model T = (21, m') exists for the fork logic FLr, con­
structed from 3, such that for all w £ W and for all <p G IntFor

3,w \=L{T) <P ^=^ w 6 dom (m' (Tj (</?))) .

Proof Define 21 as the FullPFAU with set of urelements W, let m'(R) =
R', and for each Ri G RelVar define m'(i?j) = { {x, y) : x G m(pi)}. The
equations in the set { Tv,o(7) = 1 : 7 G T } hold due to the way R' and .Ri
were defined (cf. Ch. 5).

The remaining part of the proof proceeds by induction on the structure
of the formula ip, and is as in Lemma 6.4. •

Lemma 6.9 Let T = (21, m) G /Cp. Then there exists an intuitionistic
model 3 = (W, R', m') for the logic L(T) constructed from T such that for

Relational Reasoning in Intermediate Logics 135

all w G W and for all <p G IntFor

w G dom (TO (Tj(<p))) <=> 3, w \=L(r) f •

Proof Let us define W = Urel<&, R' = m(R), and for all pi G PropVar
define m'(pi) = dom (m (Ri)). Notice that the validity of the set of equa­
tions { Tv,()(7) = 1 : j £T} in F implies the validity of the sentences T in
3. The remaining part of the proof proceeds by induction on the structure
of the formula <p as in Lemma 6.5. •

Theorem 6.21 Let ip G IntFor. Then, given x G UreVar and y G
CompVar,

\=L(T)1P <=> \=FLr x T ^ y .

Proof Let us prove the contrapositive. If J^/nt ip, then an intuitionistic
model 3 = (W,R,m) for L(r) and w G W exist such that 3,w ¥jnt ip.
Then, by Lemma 6.8 there exists a fork model T = (21, m') G /Cr s u c n

that w $. dom (m' (Ti (ip)))- Let v be a valuation satisfying u(x) — w, then
T,V¥FLT xT/(ip)y, and thus>Vz,r xTj(ip)y.

li^FLr xTj(ip)y, then a fork model T = (21, m) G KT and a valuation
v exist such that (v(x),v(y)) <£ m(T/(V>)). Thus, v(x) <£ dom (m(T/(V0))-
By Lemma 6.9 there exists an intuitionistic model 3 = (A,R',m') such
that 3, u(x) ¥L(Y) ip, and thus ¥L(T) ip- C

Definition 6.51 We define the calculus Int-FLCr by the condition

\~Int-FLCr *Qt

«<=*• V-int-FLC t u l ;TV i < > (7i) r v ,<)(7fc) ; l + l 'u ;Q t' .

Theorem 6.22 Given x G UreVar and y G CompVar,

\=FLr
 XQV <=> \~Int-FLCr XQV •

Proof
I"Int-FLCr XQV

<=> {by Def. 6.51}
\~int-FLc x ui;7V,o(7i)- ••••^v,o(7fe);i + i'u;<5 3/

•*=> {by Thms. 6.15 and 6.16}

\=FLK x ul;Tv,<)(7i)-----^v,(>(7fe);1 + ru;<5 y

file:///~int-FLc

136 Algebraization of Non-Classical Logics

4=> {by Def. FLK }
VM&K,M\=FL.x u l ; T v , () (7 l) T v , () (7 f c) ; l + l ' u ; Q y

^=» {by Def. FL' }

\=K ui;rVi0(7i)-...-rVlo(7fc);i + i'u;Q = ui
<=> {by Cor. 6.4}

{ T V i 0 (7) = l : 7 G r } h i c Q = ul
«=» {byDef . /C r }

K r Q = u l
«=• {by Def. F I r }

Let us assume we are working in an intermediate logic with Kripke
semantics, whose accessibility relation is constrained by a finite set of sen­
tences r . In order to establish the validity of a formula a, it is enough to
verify that a holds in every Kripke model in which all the sentences in T
hold.

An alternative procedure using the calculus Int-FLCr is the following:

(1) Translate the set of sentencesr to a set of relation designations.
(2) Translate formula a to a relation designation.
(3) Apply the deduction theorem (Cor. 6.4) in order to obtain a single

relation designation R.
(4) Use the proof system Int-FLCr in order to prove the formula xRy.

Joining Thms. 6.21 and 6.22, we obtain the following corollary.

Corollary 6.5 Let ip G IntFor. Then, given individual variables x G
Ure Var and y G Comp Var,

\=L(T) i> «=*> I-Int-FLCr xTl(lf))y .

Proof By Thm. 6.21,

K(r)V- <=> \=FLV xTj^y . (6.6)

By Thm. 6.22,

\=FLr xTl(ll>)y <^> ^Int-FLCr xTl{i))y . (6-7)

Finally, by (6.6) and (6.7),

l=L(r) i> « = ^ ^Int-FLCr xTT(lp)y .
•

Relational Reasoning in Intermediate Logics 137

6.12.3 Method 3

Translate constraints from T and the formula a to be proved, into relational
designations. Verify whether the term obtained from a is derivable from
the terms obtained from the members of T. In order to test this derivability
we apply equational means of reasoning within the theory of fork algebras
as in the first part of the chapter (see also [M. Prias et al. (1997)c]).

This page is intentionally left blank

Chapter 7

A Calculus for Program Construction

7.1 Introduction

The most problematic part of the process of software development is main­
tenance. Usually, even after a system is considered to be finished by the
team of developers, a long time goes by before the software is fully oper­
ational. This is due in part to the fact that most programmers tend to
make mistakes when programming. When run for the first time, their pro­
grams usually do not terminate, or return unexpected results. Even when
a program is accepted by the team of developers as a fine working program,
usually the performance needs to be improved. Improving the performance
results in code modification, and a new need for testing the program. Op­
posed to the previous idea is the notion of formal program construction.
In a formal setting, we can reason about logical or algebraic properties of
programs that are difficult or impossible to express in an informal setting.
At the heart of formal program construction is the ability to calculate pro­
grams in much the same way as a mathematician solves a set of equations or
proves a theorem constructively. As a consequence, a formally constructed
program is correct by construction with respect to its specifications, and
its derivation is a proof of its correctness.

A particular class of formalisms for program construction are those
based on formal calculi. These formalisms have a logical basis. Specifi­
cations are formulas, and a certain subset of those formulas is considered
to have an algorithmic meaning and is thus interpreted as programs from
functional, logic, or imperative programming languages. Derivation rules
resemble inference rules from logical frameworks.

139

140 A Calculus for Program Construction

Fork algebras arose in computer science when looking for a calculus
for program construction based on binary relations. Programs are to be
thought of as the relation they establish between input and output data.
Functional calculi have been extensively used for program construction [J.
Backus (1978); R. Bird (1986); R. Bird et al. (1993); R. Burstall et al.
(1977); J. Jeuring (1994); L. Meertens (1987)], but their specification lan­
guage is not declarative enough. Specifications are partial recursive func­
tions (and thus programs in functional languages), that are optimized along
the derivation process. Unfortunately, finding the functional specifications
is not always easy, and a gap wider than is desirable is left between the
original problem and its specification. Relations present some advantages
over functions. Relations allow some operations, such as the converse and
complement, that are not even defined in functional frameworks. These
operations make relations more expressive than functions, and thus re­
lational frameworks allow for more declarative specifications. Relations
have been used in program construction for some time. In [R. C. Back­
house et al. (1993); R. C. Backhouse et al. (1991); R. Bird et al. (1997);
H. Doornbos et al. (1997)], relations are introduced using a categorical
approach, and used for defining a calculus for program construction. In [R.
Berghammer et al. (1997)] and the references therein, the relational calcu­
lus is used for the construction of graph algorithms. In [B. Moller (1991);
B. Moller (1993)], a framework for program construction based on relations
(not necessarily binary ones) is presented, with applications in the deriva­
tion of graph and pointer algorithms. Other applications of binary relations
in computer science are reported in the book [C. Brink et al. (1997)].

In this chapter a calculus for program construction based on fork al­
gebras and generic algorithms is presented. The equational calculus of
fork algebras has been used in program construction for some time [G.
A. Baum et al. (1996); M. Frias et al. (1994); M. Frias et al. (1993);
M. Frias et al. (1996); M. Frias et al. (1998); M. Frias et al. (1997)a;
A. Haeberer et al. (1993)b; A. Haeberer et al. (1991)]. Here, the formalism
adopted is the first-order theory of fork algebras. First-order formulas over
relations are used in order to describe design strategies (such as case anal­
ysis, trivialization, divide-and-conquer, backtracking, etc.). Generic speci­
fications using parameters describe a class of problems rather than a single
problem. When the parameters satisfy enough properties, then it is pos­
sible to find a generic algorithm (also containing parameters) which solves
the whole class of problems. The methodology to be presented here allows

Filters and Sets 141

us to derive generic algorithms following some design strategies, starting
from generic specifications. Examples will be presented on how to derive
generic algorithms from generic specifications, following the presented de­
sign strategies.

The chapter is organized as follows. In Section 7.2 the notion of filter is
introduced and the relationship among filters, sets and guarded commands
is analyzed. In Section 7.3 the relational implication is presented and some
of its useful properties for derivation of recursive programs are stated. In
Section 7.4 the usefulness of the expressiveness and representability results
with respect to the process of program construction is discussed. In Section
7.5 the methodology for program construction is described. In Section 7.6
several examples of program derivations are presented. Finally, in Section
7.8 the approach presented here is compared with previous approaches.

7.2 Filters and Sets

Filters are partial identities, i.e., relations F satisfying the condition F < V.
The reason why they are called filters is because they can be used as strain­
ers, filtering the information that reaches the input of a relation. For exam­
ple, if F is a filter and R is an arbitrary relation, F; R restricts the input of
R to F. There is a clear relationship between filters from algebras of binary
relations and sets. A filter F univocally characterizes a set, namely, the set
{ x : xFx }. Also, given a set S, it univocally characterizes a filter, namely,
the binary relation {{x,x} : x e S}. We will denote the filter associated to
a set S by Vs- Given a filter F, by ->F we denote the term F-V. Notice
that if F = Vs for some set S, then ->F = V-§, the filter associated to the
complement of the set S. This is justified by properties 1 and 2 in Thm. 7.1.

Theorem 7.1 The following properties of filters are valid in all relation
algebras:

(1) If F is a filter, then F + ->F = V,
(2) IfF is a filter, then F-^F = 0,
(3) ^Dom(R);l=R^l,
(4) If F is functional, then

F;^Dom(R) ;1 = (Dom(F) -^Dom(F;R)) ;1 .

142 A Calculus for Program Construction

Proof

1.

F+->F = F+{T-V)

= (F-V) + (F-

= (F+F)-V

= i - r

= r.

F-^F = F- (F-V)

= (F-F) -V

= 0.

3. Let us show that

-.Dom (R) ; 1 • R; 1 = 0, and

1')

-i-Dom (R):

(by Def. -,F)

(by F filter)

(by BA)

(by BA)

(by BA)

(by Def. -.F)

(by BA)

(by BA)

;1 + iJ;l = l .

•^Dom(R) ;1 • R;l

= -nDom(R) ;1 • Dom(R) ;R;1 (by Thm. 2.3.11)

= Dom (R) ; (-^Dom (R) ; 1 • R; 1) (by Thm. 2.3.22)

= (Dom(R) ;^Dom(R) ;l)-(Dom(R) ;R;1) (by Thm. 2.3.17)

= (Dom(R) -iDom{R)) ;1 • Dom(R) ;R;1 (by Thm. 2.3.7)

= 0;1 • Dom (R) ;R;1 (by Thm. 7.1.2)

= 0 • Dom(R);R;l (by Thm. 2.3.1)

= 0. (by BA)

iDom(R);l + R;l (7.1)

= ^Dom{R);l + Dom(R) ; 1 (by Thm. 2.3.14)

= (^Dom (R) +Dom (R)) ; 1 (by Ax. 2)

= 1';1 (by Thm. 7.1.1)

= 1. (by Ax. 5)

The Relational Implication 143

4.

F;^Dom{R);l=F;R~]l (by 3)

= Dom (F) ;F;R;1 (by Thm. 2.3.19)

= Dom(F);-<Dom(F;R);l (by 3)

= (Dom(F) -,Dom(F;R)) ; 1 . (by Thm. 2.3.7)

•
Filters are used in program construction to model guards in if-then-

else-like constructs, or guards from case-like constructs. Let us consider
the following example.

Function IsZero(n : Nat) : Boolean
Begin

If n = 0 Then
<— true

Else
<— false

End If
End.

This function can be represented relationally by the following equation:

IsZerO = l 'ojCtrue + I V o i Q a l s e

where:

(1) r 0 is the filter {(0,0)},
(2) 1' ;_o is the filter { (x, x) : x > 0 },
(3) Qrue is the constant relation { (x, true) : x e U},
(4) Cfaise is the constant relation { (x, false) : i g l / } .

7.3 The Relational Implication

In this section two operations on binary relations called right residual and
relational implication respectively are defined. As we will see in Section 7.6,
the relational implication is closely related to the specification of problems
in fork algebras. We define the right residual of relations R and S (denoted

144 A Calculus for Program Construction

Fig. 7.1 The relational implication.

by R\S) in terms of the relational operators previously defined, by

R\S = R;S . (7.2)

The set theoretical definition of the right residual is given by the fol­
lowing formula

R\S = {(x, y) : Vz (zRx =» zSy)} .

The abstract definition of the relational implication of relations R and
S, is given by the equality

R^S = R-J, (7.3)

while its set theoretical definition (see Fig. 7.1 for a graphical interpretation)
is given by

R-^S = {{x,y) :Vz(xRz^ySz)} .

Figure 7.1 shows that a pair (x,y) is related via R —> S whenever the
range of x through R (the smallest circle) is contained in the range of y
through S (the medium-sized circle). From (7.2) and (7.3) it is immediate
that the relational implication is definable in terms of the right residual.

The Relational Implication 145

More explicitly, the following is true in every relation algebra:

R-*S = R\S.

Since the relation algebraic characterization of the relational implication
is non algorithmic (complement does not have nice properties when applied
over a composition), some properties are presented next that will be very
useful in the derivation of algorithms from relational specifications.

Besides some simple properties, such as

(P+Q) -*R={P^R)-{Q^R) (7.4)

and

P->(Q-.R) = (i > - > Q) . (P - f l) 1 (7.5)

(which follow directly from the definition), some more elaborated properties
that lead to recursive relational expressions for computing the relational
implication are presented.

Lemma 7.1 For any relations P and Q,

^Dom (P) ;(P-^Q)= -iDom (P) ; 1 .

Proof The inequality < is trivial, due to the fact that P —» Q < 1. For
the inequality > we have

Dom(P);(P^Q)

= ^Dom (P)

= -^Dorn (P)

> ^Dom (P)

= -iDom (P)

= ^Dom (P)

P\Q

Dom(P);P;$

Dom(P) ;1

-^Dom(P) ;1

1.

(7.6)

(by (7.3))

(by Thm. 2.3.11)

(by monotonicity and BA)

(by Thm. 7.1.3)

(by Thm. 2.3.7)

•

146 A Calculus for Program Construction

Lemma 7.2 For any relations P, Q and R,

Dom(P+Q);((P+Q)-+R)

= (Dom(P) •Dom(Q));((P->R)-(Q -» P))

+ (Dom (P) • -^Dom (Q)) ;(P-* R)

+ (-iDom(P) -Dom(Q));(Q -» P) .

Proof By Thm. 2.3.12,

Dom(P+Q);((P+Q)^R)

= Dom(P);((P+Q)^R)

+ Dom (Q) ; ((P+Q) - P) . (7.7)

Let us now concentrate on the term

Dom(P);((P+Q)^R) .

P > o m (P) ; ((P + Q) - + P)
= {by (7.4)}

Dom(P)-((P^R)-(Q^R))
= {by Thm. 7.1.1}

Dom (P) ; ((P -> P) • {(Dom (Q) +^Dom (Q)) ; (Q -* P)))
= {by Ax. 2 and BA}

Dom (P) ; ((P -» P) • (Dom (Q) ; (Q -> P)))
+ Dom (P) ; ((P -> R)• (^Dom (Q) ; (Q -» P)))

= {by Thm. 2.3.22 and Lemma 7.1}
Dom (P) -Dom (Q) ; ((P -* R)-(Q-* P))

+ Dom (P) ;-.Dom (Q) ;(P - • P)
= {by Thm. 2.3.7}

(Dom(P) -Dom(Q))- ((P - P)-(Q -> P))
+ (P>om(P) - - ,Dom(Q)) ; (P^P) .

Thus,

Dom(P) ; ((P ->J2) - (Q-> .R))

= (P>om(P) •JDom(Q)); ((P -* £)-(Q - • P))

+ (Dom(P) -iDom(Q));(P -* R) . (7.8)

The Relational Implication 147

Reasoning along the same lines allows us to prove that

Dom(Q);((P + Q)->R)

= {Dom(P) .Dom(Q)); ((P -> R)-(Q - • R))

+ (^Dom(P) • Dom(Q));(Q-* R) . (7.9)

The lemma finally follows from (7.7), (7.8) and (7.9). •

Lemma 7.3 If A is a functional relation, then

Dom(A);(A->P) = A;P .

Proof

Dom (A) ;(A-*P)= Dom (A) ;A;P (by (7.3))

= A;P (by Thm. 2.3.19)

= A;P. (byBA)

•
Lemma 7.4 If B is afunctional relation, then

Dom(B);(B;P -> Q) = B;(P^Q) .

Proof

Dom(B);(B;P -» Q) = Dom(B) ;B;P;Q (by (7.3))

= B;P;Q (by Thm. 2.3.19)

= £ ; (P - » Q) . (by (7.3))

•
Lemma 7.5 Let A and B be functional relations. Let

P = A + B;P and T = P - » ' Q .

Moreover, let us assume that

Dom (P) = Dom (A) +Dom (B) and Dom (A) -Dom (B) = 0 .

148 A Calculus for Program Construction

Then,

Dom(P);T = A;Q + B;T .

Proof The lemma follows from Lemmas. 7.2, 7.3 and 7.4. •

In a similar way to Lemma 7.5, we obtain a proof for Lemma 7.6 below.

Lemma 7.6 Let A, B and C be functional relations. Let

P = A + B;P + C;P and T=P^Q.

Moreover, let us suppose that Dom(A), Dom(B) and Dom(C) are
pairwise disjoint. Then,

Dom (P) ;T = A;Q + B;T + C;T .

From Lemmas 7.5 and 7.6 we see that the recursiveness of the relation
P allows us to obtain a recursive specification for the relation T.

Lemma 7.7 For every relation R,

P;(P^R)<R.

Proof

P ; (P - > P) < P ^ (P ; (P - » P)) - £ = 0 (BA)

(P ; £) • (P -» R) = 0 (by Ax. 7)

^ P;R. P ; P = 0 (by (7.3))

«=> 0 = 0. (BA)

•
Lemma 7.8 Let R be an antisymmetric relation (i.e., RR < V), then,
the relation P- (P —> R) is functional for all relation P.

Proof In order to show that P- (P —> R) is functional, we will prove that

(P- (P -> R)Y; (P- (P - R)) < V .

Representability and Expressiveness in Program Construction 149

(P.(P^R)Y;(P.(P^R))

= (P-(P -> fl)") ; (P- (P -» fl)) (by Thm. 2.3.5)

< (P ; (P- (P - fl))) • ((P - P)"; (P- (P - P))) (by Thm. 2.3.16)

< (P; (P -> P)) • ((P -> RY;P) (by monotonicity)

= (p ; (P - > f l)) - (p ; (P - i i)) " (by Ax. 6)

<R-k (by Lemma 7.7)

= fl-fl (by BA and Ax. 4)

< ! ' • (by Hyp.)

•

7.4 Representability and Expressiveness in Program Con­
struction

As a consequence of Thm. 4.3, the first-order theories of AFA and PFA are
the same, and thus a natural semantics can be attributed to first-order for­
mulas over abstract relations in terms of binary relations. This is a very
important property in a calculus for program construction. The equiva­
lence between the first-order theories of PFA and AFA guarantees that any
first-order property valid for proper fork algebras can be proved syntacti­
cally from the axioms describing abstract fork algebras. This has a direct
application in program construction. Let us consider an intermediate step
in a derivation of an algorithm from a relational specification So. The
derivation has a shape

S0,Si,... ,Sk,

where for all i, 1 < i < k, Si is obtained from S0,..., 5j_i by means of the
derivation rules. If Sk is still not the algorithm we are looking for, then
further steps must be performed. If resorting to thinking about binary re­
lations shows that a valid first-order property allows Sk to evolve to a new
expression E (which is closer to the intended algorithm), then the repre­
sentation theorem guarantees that a syntactic proof Sk, Sfc+i,... ,E exists,
allowing us to reach the formula E from Sk- This shows that the heuristics
arising from considering concrete binary relations can be employed through-

150 A Calculus for Program Construction

out the process of program derivation using the rules and axioms of the cal­
culus for abstract fork algebras. Another important property stems from
the fact that only a finite number of axioms are necessary for describing the
class of abstract fork algebras. Thus, the syntactic proofs mentioned above
can be more easily performed with the assistance of a computer system.

Regarding the expressiveness of fork algebras, it was proved in Ch. 4.2
that first-order theories can be interpreted as equational theories in fork
algebras. Theorem 5.6 shows that a wide class of problems (at least those
that can be described in first-order logic) can be specified in the equational
calculus of fork algebras. Moreover, the abstract relational specification
can be obtained algorithmically from the first-order specification by using
the mapping TV,a-

7.5 A Methodology for Program Construction

In this section the outlines of a methodology for program construction based
on fork algebras using generic algorithms (program schemes) are presented.
As will be shown in the next section, there is a useful relationship between
the structure or form of a generic relational specification and a generic
algorithm (a set of parameterized 'algorithmic' equations) to compute this
specification.

The starting point of the methodology is a formal specification of the
problem to be solved. In this case, first-order logic with equality will be
used as the specification language, because it is a simple formal language
that is taught in most computer science courses. Along the description
of the methodology, an example will be outlined that will be thoroughly
discussed in Section 7.6. For the examples, the notion of generator will
be required. Intuitively, generators retrieve the components (members) of
elements from structured types. Examples of generators that will be used in
Section 7.6 include retrieving the elements of a list, retrieving the elements
of a tree, retrieving all the sublists of a list, etc.

Description of the example problem:

Let S(/3) be a structured type, and let G C S(/?) x (3 be
a generator. Select those generated elements that satisfy

(1) a condition c\, and
(2) a condition c<i with respect to all the generated ele-

A Methodology for Program Construction 151

ments that satisfy the condition c\.

In the previous description S could be a type functor [R. Bird et al.
(1997)]. The sample problem P can be specified by the first-order formula:

P(x,y) <=>

G(x,y)ACl(y) A Wz(G{x,z) A Cl(z) =* c2(z,y)) . (7.10)

Notice how close formula (7.10) is to the natural language description
of problem P, thus giving a totally declarative specification.

Once a first-order specification of a problem is given, a relational spec­
ification must be obtained. In order to obtain this specification, we can
proceed in one of the following two ways. Applying Thm. 5.6, from a first-
order specification (p and using the mapping Ty ,a we will obtain a relational
term Tv,<r(¥>) that captures the meaning of problem P. Unfortunately, the
term resulting from applying the mapping Tv,<r is not always very adequate
with respect to the process of program derivation. The second method (the
one to be used here), consists of reducing the first-order formula <p into an
equation ev using the set-theoretical definition of the relational operators.
Notice that, given a formula, there are many ways in which this reduction
can be done. For the example it is possible to proceed as follows.

Define P', C\, C2 and G' as new binary relations. Intuitively, the binary
relation P' will stand for the predicate P in the sense that

xP'y 4=4> P(x,y),

C\ will stand for the unary predicate c\ in the sense that

xC\x <*=> c\(x),

C2 will stand for c2 in the sense that

xC2y <=> c2(x,y),

and G' stands for G in the sense described by the formula

xG'y <^=> G{x,y) .

Notice that C\ is a filter, and this will in general be the method used
for representing unary predicates.

From the previous definitions, it is easy to check that

P' = G';Ci • (G'-d -» C2) .

152 A Calculus for Program Construction

Once a generic relational specification is obtained (generic in the sense
that no assumption is made about the relations C\ or C2), we will choose
a design strategy that will guide the process of deriving an algorithm from
this specification. In programming in general, examples of design strategies
include case analysis, trivialization, divide-and-conquer, backtracking, and
many more [A. V. Aho et al. (1983); R. Bird et al. (1997); H. Partsch
(1990); D. Smith (1985); D. Smith (1987)]. In the methodology presented
here, the first-order language of fork algebras will be used to express such
design strategies (recall that from Thm. 4.3 and the discussion following
it, formulas from the first-order theory of fork algebras have a standard
semantics in terms of concrete binary relations). A trivial example of a
design strategy is case analysis (C-A). A problem is said to be solved using
this strategy if the domain of the problem can be partitioned, let us say, in
k parts Di,... ,Dk, and we find k algorithms A\,...,Ak such that A{ solves
the given problem when its domain is restricted to the part Di. This can
be more simply and formally stated by the following formula over relations:

C.A(R,Ru...,Rk) «=>
k

f\ Dom(Ri) -Dom(Rj) = 0 A R = ^ ^ • C7-11)
i<i<j<k i = i

Formula (7.11) is to be read as follows:

'Problem R is solved by case-analysis using problems
Ri,... ,Rk\

Notice that (7.11) provides the means to solve problem R, that is, given an
input a for R there is to find Ri such that a € Dom (Ri) and then compute
Ri(a).

The strategy of trivialization (Triv) is a particular instance of case anal­
ysis where one of the subproblems is assumed to be easy to solve. Easy
subproblems are, for example, those whose solution does not depend on the
original problem (non-recursive parts), or for which a solution is at hand.
We then have

Triv(R,R0,R1,...,Rk) <=>

C-A(R,Ro,Ri,...,Rk) A Easy(Ro). (7.12)

A Methodology for Program Construction 153

The relations Ro, R\,..., Rk are usually determined by properties of the
problem domain. In general, domains allow for 'natural' partitions (empty
and nonempty lists, trees of height 1 or greater, etc.). In [H. Partsch
(1990), pp. 201-202], these partitions are obtained by introducing tautolo­
gies. Hence, the following heuristic can be used in order to determine
relations RQ, RI, ..., Rk.

Heuristic 7.1 Let D be a domain (type) characterized by the partial
identity V D- Assume there are identities 1'0, l ' i , . . . , l'fc such that I'D —
l'o + l ' i + • • • +1 '*- I n order to find the problem (relation) Ri, 1 < i < k,
define Ri = l'i;R, provided Easy(l'o;R) holds.

Formula (7.12) is to be read as follows:

'Problem R is solved by trivialization using relations
Ro, Rx,..., Rk with easy Ro'.

Formula (7.12) provides a means to solve problem R, namely, using case-
analysis in the case of inputs outside the domain of RQ, and the simple prob­
lem Ro otherwise. The difference between trivialization and case-analysis
is that in the latter we may need to derive solutions for all subproblems,
while in the former, problem Ro presents a definite improvement in the
derivation process.

The strategy of recomposition (Recomp) is defined by the formula

Recomp(R,Split,Qx,-.. ,Qk, Join) <*=>

R = Split;(Qx®---®Qk);Join, (7.13)

where the relations Split and Join stand for programs so that the first
one effectively decomposes the data, and the latter combines the results of
Qif->Qk in order to provide a solution for R.

By joining the strategies of recomposition (cf. (7.13)) and trivialization,
we obtain the following formalization of divide-and-conquer:

D&C(R,R0,Split,Qx,...,Qk,Join) <̂ =>

3Q(Triv(R,Ro,Q) A Recomp(Q, Split, Qx,.. .,Qk, Join)),

where the variable R may appear inside some of the terms Qx,- • •, Qk, but
does not affect the term Ro.

Generally, relations Qx,- • • ,Qk will be either 1' or the relation R itself.
This is supported for example by Smith [D. Smith (1985)] in his schema of

154 A Calculus for Program Construction

divide-and-conquer algorithms. How to find the parameters for the D&.C
strategy is then explained by the following heuristic.

Heuristic 7.2 Among the relations Qi,...,Qk, those that will take the
value R are obtained by folding of the definition of R. After no more
foldings are possible, the remaining relations are to be set to 1'. If we are
heading correctly towards a divide-and-conquer algorithm, at this point we
should be dealing with a term that looks approximately like

I S\;R\J\ ^
®

®

®
Ti+i

So;

\ Tk

;Jo,

I
where R does not occur in any of Ti+\,... ,Tk. The last step is rewriting
Tm (i < m < k) as Sm;Jm, with Sm the 'Split' part and Jm the 'Join' part.
Finally, let Split := So; (Si® • • • ®Sfc) and Join := (J i® • • • ® Jfe) ; Jo-

There are many interesting problems in computer science for which
efficient solutions are achieved using divide-and-conquer — for example,
searching, sorting, matrix multiplication, Fourier's transform, etc. There
are also many problems whose solution is closely related to the strategy of
divide-and-conquer but that cannot be put into the schema. Let us consider
the following problem Subtree as an example:

Given a tree t and a node n, Subtree retrieves the sub­
tree of t whose root is the node n.

If we blindly apply the schema of divide-and-conquer, making two re­
cursive calls for treating the left and right subtrees, one of these calls will
always be undefined — namely, that call that treats the subtree that does
not contain the node n. Thus, before making the recursive call it must be
decided what the parts of the original datum for which recursively calling

A Methodology for Program Construction 155

Subtree will yield an output are. In this particular example, it suffices
to check which subtree of t contains the node n. These kind of problems
suggest the definition of a generalized version of the strategy of divide-and-
conquer. The strategy is defined as follows:

GenDhC (R,Ro,Di,Spliti,Ai,Joini,..., Dk, Splits, Ak, J oirik) <=>

/ \ Di<V A Triv(R,Ro,Di;R,...,Dk;R) A
i<t<fe

/ \ 3Qi1,...1QiJi(Ai = Qi1®---®QijiA
l<i<k

Recomp(Di;R,Spliti,Qi1,... .Qi.^Joirii)) . (7.14)

Notice that when k equals 1, GenD&zC becomes D8zC. Once the iden­
tities Di (1 < i < k) are identified, heuristic 7.2 can be applied to find
the remaining parameters. In order to find the identities Di, we use the
following heuristic.

Heuristic 7.3 Assume the specification contains some subexpression with
shape (G;Ri —> R2) for relations G, R\ and R2. Notice that this is a rea­
sonable assumption because relational implications naturally appear from
first-order specifications containing universal quantifiers. Assume also that
G = fi;Gi +•••+ fk',Gk, where fi is a functional relation for all i,
1 < i < k (G could be for instance a generator). Let us see the case
for k = 2. Then, we reason as follows:

G;R\ —> R2

= {byDef. G}
(fi',Gi + f2',G2) ;Ri —> R2

= {by Ax. 2 and (7.4)}
{fx\Gi\R± —• R2) • (f2',G2;Ri —> R2)

= {by Lemmas 7.1 and 7.4}
(/ i ; (Gi ; i*i -* R2) + - 1 D o m (/ i) ; l)

•{h;{G2;Ri -» R2) +^Dom{f2);l).

Distributing + over •, we obtain the terms:

(1) / i ; (C?i; i i i -» R2) • h\(G2\Rx -> R2),
(2) / i ; (G i ; i ? i -> R2) • -£>om(/2) ;1 ,
(3) -.Dom (/ i) ; l • f2;(G2;Ri - #2), and
(4) - . f l o m ^) ; ! • - .Dom(/ 2) ; l .

156 A Calculus for Program Construction

The domains of these relations are contained, respectively, in the niters

Dom(/i) -Dom (f2), Dom (fi) -^Dom(/2),
-iDom (/i) -Dom (/ 2) , -'Dom (/i) --iDom (/ 2) .

Among these domains (which, notice, are all disjoint), the nonempty ones
become the identities D{.

Each strategy comes with an associated explanation about how to con­
struct a program solving the original problem. It is easy to see how
the previously given strategies induce the structure of the programs. For
example, it is clear from the definition of case analysis that whenever
C.A{R, RQ,R\) holds, we can infer that R = Ro + R\, thus giving a pro­
gram (equation) of the desired shape solving the problem R. In the same
way, when D&C(R, RQ, Split,Qi,..., Q^, Join) holds, we have a program
with shape

R = Ro + Split;(Qi <g> • • • <g> Qk);Join

solving R. Also, when (7.14) holds, we have a program with shape

k

R = R0+ ^r/Di;Spliti;(Qil®---<g>Qiji);Joini. (7.15)

The niters Di in (7.15) play the role of guards in case-like constructs.
Notice that strategies are in general formulas of the form

Strat(R,Xi,...,Xn) «=4> Strat-Defi.nition{R,Xu... ,Xn), (7.16)

where Strat is a (n + l)-ary predicate symbol (name and parameters of
the strategy), and Strat-Definition is a formula on the relational variables
R, Xi,... ,Xn, involving previously defined strategies. Deriving a generic
algorithm GA for solving a generic problem GP whose generic relational
specification is GS(P\,..., Pfe) using a strategy denned as in (7.16), consists
of finding relational terms T\(Pi,..., Pk),..., Tn(Pi,..., Pj.) such that

Theory{Dx),.. .,Theory(Dm),GS(Pi,. ..,Pk) h u *

StratJ)efinition(GP, T i (P j , . . . , P f c) , . . . ,Tn{Pu ..., Pk)). (7.17)

In (7.17), Theory(Di),... ,Theory(Dm) are relational specifications of
the domains of the problem [R. Berghammer (1991); R. Berghammer et

A Methodology for Program Construction 157

al. (1993)c; R. Berghammer et al. (1993)b], and the symbol I~AFA denotes
first-order logic entailment under the theory of AFA.

Notice that the algorithms characterized by the strategies are as a
matter of fact fork algebraic equations. Thus, in order to find terms
T\{P\,... ,Pk),. • •, Tn(Pi,..., Pfc) we will resort to equational reasonings
using the axioms of fork algebras, plus those equations describing the do­
mains Di,..., Dm. The general strategy we will use for deriving recursive
algorithms will be Unfolding/Folding [J. Darlington (1975)].

The terms T1(P1,... ,Pk),... ,T„(P i , . . . ,Pk) required in (7.17), and
found as described in the previous paragraph, are either algorithms if they
are built with algorithmic combinators, or can be considered as relational
specifications of simpler problems.

In Section 7.6 we will show that for the sample problem, if we define

DRti := Dom(Ri)-Dom(F1;P
/),

DR^I := Dom(Ri) -^Dom(Fi;P'), and
D^RA := ->Dam(R1)-DomlFi;P'),

we can deduce

[P, = C;C1 - (G ' A - C2)

A G' = Vh\Ro + V^b;Ri + V^-F^G'

A C2-C2<V A Easy(Vb;P')}

=> GenD&;C(P',Vb;P',DRyi,R1VF1,V®P',Join1,

DR^UR,V,C1.C2,D-,R,1,F1,P',V), (7.18)

where Ri and Fi are functional relations, Vb and l'_,j, are filters that pro­
duce a partition of the domain l's(/3)> an<i

Joim := ((Ci-C2 ® C2) + (C i ; C 2 is 1')) ;2 .

According to the strategy GenD&C, we obtain the algorithm

Rx V
P' = Vb;P' + DR<1; V ; ® ;Joini

Fi P'

+ DR^R-id-Ci) + D-,RA;F1;P'.

158 A Calculus for Program Construction

In our formalism a strategy associates to each generic specification
GS(Pi,..., Pk) a generic algorithm GA(Ti,...,Tn). If we instantiate the
parameters Pi,...,Pk occurring in specification GS with relation desig­
nations Ri,... ,Rk, and derive algorithms Ai,...,An (using this same
methodology) for terms T\(Ri,... ,Rk), • • -, Tn(Ri,... ,Rk), we obtain a
particular algorithm, namely A := GA{A\,..., An) now for the less generic
problem S := GS(Ri,..., Rk). Let us see how this is reflected in the prob­
lem chosen as an example. If in the sample problem we take*

(1) /3 := Nat and S(/J) := List(Nat),
(2) G' = VLi;Hd + VL>i\Hd + VL^i;Tl;G' (i.e., RQ = Hd, # i =

Hi and Fx = Tl),
(3) Ci := 1', and
(4) C2 := z<, the standard ordering between natural numbers,

then P' specifies the problem of finding the minimum element in a list.
Notice that 3oin\, under this instantiation, specifies the problem of finding
the minimum between two natural numbers. Since it is not in an algorithmic
form, this same methodology can be applied to derive an algorithm for this
problem. Once this is done, (7.18) can be optimized to obtain a divide-
and-conquer algorithm for finding the minimum element of a list.

In Fig. 7.2 we give a graphical description of the methodology we pro­
pose.

7.6 Examples

In this section we will present several generic problems for which we will
proceed as follows.

(1) We will specify the problems in first-order logic, in a totally declar­
ative manner.

(2) We will specify the problems with fork-algebraic equations obtained
from the first-order specifications.

*We will denote by Hd and Tl the functions that , given a list [e : I], retrieve the element
e and the list I, respectively. By Cons we denote the function that , given an element e
and a list I, produces as output the list [e : I]. By VLk we denote the filter over lists
of length k, and by l ' ^ x t the filter over lists of length greater than k. By ^ we will
denote the standard ordering between natural and integer numbers.

Examples 159

GS(PU ...,Pk)
 Strat . GAiT^P,, ...,Pk),..., Tn(Pi,..., Pk))

Pi :— Ri

\<i<k

derive Ai

to compute

Ti(R\,... ,Rk)

•A:=GA{Ax,...,An)
computes

Fig. 7.2 Methodology for program construction.

(3) We will derive generic algorithms for these generic problems using
the presented design strategies.

(4) We will solve some specific problems by using the generic algo­
rithms.

The derivations we will present may seem too long and detailed, but
they are essential in order to show that smooth syntactical derivations
of algorithms are possible by using the methodology we propose. Also,
these derivations are themselves constructive proofs of correctness of generic
programs with respect to generic specifications. In this sense, the amount of
effort invested in making (or understanding) complex derivations is largely
compensated for by their usefulness in designing concrete programs.

7.6.1 First Example

The first example will be the problem used in the previous section as an
example. The problem was informally specified by the sentence:

Let S(/3) be a structured type, and let G C S(/3) x /? be
a generator. Select those generated elements that satisfy

(1) a condition c\, and
(2) a condition c^ with respect to all the generated ele­

ments that satisfy the condition C\.

Problem P can be specified by the first-order formula:

P(x,y)

G(x,y)ACl(y) A \/z(G(x,z) ACl(z) =» c2(z,y)) . (7.19)

160 A Calculus for Program. Construction

Recalling the set-theoretical definition of the relational operators, we
can transform (7.19) into the following abstract relational specification:

P = G;C1 • (G;d - C a) ,

where our only assumption about C\ and C2 is that C\ is a filter.
It is at this point when the form of the generator becomes important.

Let us assume that l's(/3) = l'& + l'-.t, where l'j, represents the 'base' part
of the type S(/?). Suitable forms for generators are, for instance:

Gl = Vb;Ro + V^,;Ri + r ^ ; F i ; G i , (7.20)

G2 = Vb;Ro + l ' ^ ; i ? i + l ' . 6 ; F i ; G 2 + V^b;F2;G2. (7.21)

In (7.20) and (7.21) we assume that RQ and i?i are fixed relations with
Ri functional, and that Fi C S (/?) x S (/?) and F2 C S (J3) x S (/?) are
functions that decompose data. Since G2 is more general than G\ (take F2

to be Fi in (7.21)), we will work with G2, and therefore the specification
becomes

P = G2;C1 • (G 2 ; d -> C2) . (7.22)

In order to simplify the presentation of the derivation, we will make the
following assumptions:

Assi : Dom {F{) = Dom (F2),

Ass2 : Dom (Ri) < Dom (F x) .

Notice that in the derivation below, these assumptions can be easily dropped
and the changes will be minor, resulting only in longer formulas but no
technical complications.

We will derive a generalized divide-and-conquer solution for the prob­
lem. Thus, we must find relations RQ, D\, Spliti, Ai, Joini,..., Dk, Splitk,
Ak and Joirik such that the formula

/ \ Di<V A Triv(R,Ra,Dl;R,...,Dk\R) A
l<i<k

/ \ 3Qil,...tQiii(Ai = Qi1®---®Qiji A
l<i<fc

Recomp(Di;R, Spliti, Qh,..., Qiu, Joini))

holds.

Examples 161

Since l's(/3) = l'b + l'-.6> w e wiU begin with a Trivialization step using
Heuristic 7.1. If Easy(Vb',P) holds, we must concentrate on the relation
l'_,(,;P. Thus, we will now derive an expression for the relation 1'-,&;P of
the form required in (7.14).

= { by (7.22)}

i ' ^ ; (G 2 ; C i • (G2;d -» G2))

= { Unfolding the definition of the generator G2 }

(R\ + F\\G2 + F2\G2) \C\

• ((R1 +Fi;G2 + F2;G2);C1 - G2)

= { Applying Ax. 2 several times }

(i?i;Ci + F i ;G 2 ;Ci + F2;G2\Ci)

• ((Ri;d + F u G a j d + Fa jGa jd) -> G2)

= {by(7.4)}

(7ii;Ci + ^ i ; G 2 ; C i + F 2 ;G 2 ;Ci)

•(/ZIJGX - C 2) - (F 1 ;G 2 ;C 1 -» G2) • (F2;G2;C1 -» G2)

= { Distributing + over • }

(Rud) • (i inGi -» G2) • (F^G^d -> G2) • (J ^ G ^ -> G2)

+ (Fi;G2 ;G!) • (i ? i ; d - G2) • (F u G a j d -> G2) • (F2 ;G2 ;G1 -» G2)

+ (F2 ;G2 ;Gi) • {Ri;d - C2) • (F i ; G 2 ;G! -> G2) • (i ^ G a A -> G 2) .

In order to shorten notation we will denote the term G2;C\ —• G2 by
X. Let us consider the term

(Ri;d) • (Ri;d - G2) • (F u G a j d -> G2) • (F2 ;G2 ;Gi -> G2) . (7.23)

(fli;Ci) • (Ri;d - G2) • (F i j G a j d - C2) • (F2;G2;d - G2)
= {by Lemmas 7.3 and 7.4 using Assi and Ass2 }

(i i i ;Ci) -(i l i jCijda)- (F i ; *) • (Fa;*)
= {by Thm. 2.3.17}

(f l ^Gx •Cl]C2)).{Fl]X)-{F2;X)
= {by Thm. 2.3.22}

(f i i ; (Gi-C2)) - (F i ; X)-(F2;X)
< {because by (7.22) G2;Gi > P, and monotonicity}

162 A Calculus for Program Construction

(i? 1 ; (C 1 .C 2)) - (F 1 ; (P - G2)) • (P2; (P -> G2))
= {if G2 is antisymmetric, and Lemmas 7.1, 7.3, 7.8}

(i?i ;(C1-C2))-(Fi;(P;C2 + -,Dom(P) ;1))
•(F2;(P;C2 + -iDom(P);l))

= {by Ax. 2 and BA}
(f l i ; (G i .C a)) - (F i ;P ;C 2 HJ 2 ; i ' ;G 2)
+ (J2i ; (G 1 .C 2)) . (P 1 ;P;C 2) . (F 2 ;^Dom(P) ;1)
+ {Rl;{C1-C2)).{Fl^Dom{P) ;1) .(P2 ;P;G2)
+ (Ri;(C1.C2)).(F1;^Dom(P) ;l).(F2;^Dom(P) ;1).

Let us consider now the term

(Fi;G2;Ci) • (i?i;Ci —> C2)

• (P i ; G 2 ; d - G2) • (P2 ;G2 ;Ci -» C2) . (7.24)

(F i j G a j d) • (Pi ;Gj -> C2) • (Pi;G2 ;G1 -> G2) • (F2;G2;Ci -» G2)

= { by Lemmas 7.3 and 7.4 using Assi and ylss2 }

(Fi jGajCO^iJi jCijda + - i D o m ^ d) ; l) . (F i ;X) -(P2 ;X)

= {by BA and Thm. 2.3.17}

(Pi ; ((G 2 ;G 1) .X)) . (P 1 ;G 1 ;G 2 + ^Dom^-C^ ;1)-(P2;X)

= { folding P }

(F i ;P) - (f l i ;Ci ;d 2 + - J D 0 m(P 1 ;G 1) ; l) - (P 2 ;X)

< {because by (7.22) G2;Gi > P , and monotonicity }

(F1;P)-(R1;C1;C2 + -.£>om(/ii;Ci) ;1)-(P2 ;(P -> C2))

= {if G2 is antisymmetric, and Lemmas 7.1, 7.3, 7.8}

(i ^ P H f l i i C i j C a + -P>om(P 1 ;G 1) ; l) . (P 2 ; (P ;G 2 + -iDom (P) ; 1))

= {byBA }

(P I ; G I ; G 2) - (P I ; P) - (P 2 ; P ; C 2)

+ (Pi ;G 1 ;G 2) - (P 1 ;P) . (P 2 ; -P> 0 m(P) ;1)

+ (- . D o m ^ u d) ; l) - (P i ; P) - (P 2 ;P ;G 2)

+ (-,Dom(iZ i ;Gi) ; l) - (P i ;P) - (P 2 ; -P 'om(P) ;1).

Examples 163

Finally, if we consider the term

(i ? 2;G 2 ;C 1) - (i? 1 ;C 1 ->C 2)

• (Fx; G2; Cx -> C2) • (P2; G2; d -> C 2) , (7.25)

a derivation along the lines of the previous one proves that:

(F2;G2;C1) • (i2 i ;Ci -» C2) • (Pi;<Z2;Ci - C2) • (P2 ;G2 ;Ci - C2)

< (i2i ;Ci;d2) .(Fi;P;<52)-(F2 ;P)
+ (i2 1 ;C 1 ;d a) . (F 1 ; - .£>om(P); l) - (F a ;P)
+ (-nDomiRiid) ;1)-(F1;P-A)-(F2;P)
+ (-.DomiR^d) ; l) - (P i ; - D 0 m (P) ;1)-(F2 ;P).

Joining the derivations performed from terms (7.23), (7.24) and (7.25),
we obtain:

l ' ^ ; P < (Rx;(C1-C2)).(F1;P-A).(F2;P;C2)
+ (i21;(C71-C2)).(Pi;P;tf2).(P2;-.Z?om(P) ;1)
+ (i21 ;(C1-C2)).(Pi;-.I>0m(P) ;1)-(P2;P;<?2)
+ (i2 i ;(Ci-C2)).(Pi;- .I>om(P) ; l) - (F 2 ; -Dom(P) ;1)
+ (i i i ;Ci;d?2)-(Fi;P)-(P a ;P;(52)
+ (Ri;Ci;<?2) • (Fi; P) • (P 2 ;^Dom (P) ; 1)

+ (^ o m (B i ; C i) ; l) - (Pi ;P)- (P 2 ;P ;C2)
+ (- U o m ^ u C i) ; l) - (P i ; P)-(P 2 ; - i£)om(P) ;1)
+ (iii;Ci;C?2)-(Fi;P;(52).(P2 ;P)
+ (i?j; d ; C2) • (Pi; -Z)om (P) ; 1) • (P2 ; P)
+ (-.Dom(i2 i ;Ci) ; l) - (P i ; P ; d 2) - (P 2 ; P)
+ (-.£>om(fl i ;Ci) ; l) - (P i ; - D o m (P) ;1)-(F2 ;P).

Let us define the niters

•D«,l,2

A R , 1 , - , 2

•Dfl,-.1,2

•Dft,-,l,-,2

•D-.fl,l,2

•C-.fl,l,-.2

•D-.fi,-.1,2

= Dom(#1)
= ^0771(^0

= Dom (.Ri)
= Dom(.R1)
= ^Dom (Ri
= —'Dom (Ri
= -iDom (Ri

Dom (Pi; P) • Dom (F2;P),
Dom {Fi; P) • -Dom (P2; P),
-.Dom (Pi; P) • Dom (P2; P),

-Dom (Fi; P) • -Dom (P2; P),
;Cx) • Dom (Pi;P) • Dom (F2;P),

;Ci) • Dom (Pi;P) • -Dom (P2; P),
;Ci) • -Dom (Pj;P) • Dom (P2;P).

http://��D-.fi

164 A Calculus for Program Construction

Since by Thm. 7.1.4 Fi^Dom{P) ;1 = (Dom(Fi) •^Dom{Fi]P)) ;1
{i = 1,2), using the previously defined filters and Thm. 2.3.22,

r ^ , ; P <DRX2\ (Ri;(Ci-C2) • FI;PA • F2-PA)

+ DR,h2; (RI;CI;C2 • F,;P • F2;PA'

+ DRA>2; {RI;CI;C2 • F^P-A • F2;P\

+ DR,1^2;(RI;(C1-C2) • Fi;PA)

+ DR^-JRI&A • FDP)

+ DR^IX, hi;(C1-C2) • F2;PA)

+ D R ^ X ^ - C . A • F2;P)

+ DR^I^2',RI', (C I -C 2)

+ D^Rth2; (FI;P • F2;PA)

+ D^Rili2;(Fi;P;d2 • F2;P)

+ D^^F^P + D^R^2\F2]P.

Applying Thm. 3.2.1 several times,

(

V^b;P<

Ri;{Ci-C2)
V

Fv,P;C2

V
F2;P;C2

\

)

+

Rl-,Ci;C2

V
Fi;P

V
F2;P;C2

\ (

;2
\2 +

J V

Rv,Ci;C2

V
Fi;P;C2

V
F2;P

•2

Ri;(Ci-C2) \ I RuCv,d2

+ -Dfl,l,-2;| V \;2 + DRA^2A V | ;2
Fi;P-A J V FuP

I fli;(Ci.Ca) \ / fli;Ci;tfa

+ DR^X, V \;2 + DH, - , 1) 2 ; V \ ;2

\ F2;P;d2 J V F2;P
I Fv,P \ (FV,P;C2 \

+ D^R,lfl\\ V M + D-R,i,2\\ V \\2
\ F2;P;C2 J \ F2;P J

+ r>iW,-.2;fli;(Ci-C2) + D^RI1I-,2]FI;P + D , B l , u ; f t ; P . (7.26)

Examples 165

Applying Thm. 3.2.9 and Ax. 2 in (7.26),

V-,b;P<

Ri
V

V
F2

V
®
P
®
P J \ \ C2

Rx V
+ DRtl^2; V ; V

Fi P

(CXC2 Cl-C2 Cy,C2 \

C2 \ + I V \ + (C2 \

) J V c2 / \ r
C i - C 2 Ci;<52

+
1' c2

C i - C 2 Ci;d2

® + g>
C2 V

V C2

® + ®
c2 r

+ DR,^2;Rv, (Ci -C 2) + 2) ^ , 1 , ^ 2 ^ 1 JP + £ ^ 1 , 2 ^ 2 ; P - (7.27)

Hi r

+ £>fi,-.i,2l V ; V
F 2 P

Fi P

+ O-fi.1,2; V ; V
F 2 P

Let us define
Split\
Split2

Splits
Splits
Split§
Splits
Splitr

= R1V(F1VF2), Ax

= i ? iVF 1 ;

= RiVF-2,
= F1VF2,
= Ri,
= Flt

= F2,

A2

A3

A4

A5

A6

A7

= 1 ' ® (P ® P) ,
= V®P,
= V®P,
= p®p,
= v,
= p,
= p.

Let us also define
/ C\-C2 C\\C2 C\\C2

Joini :=

V

c2
®
c2

+ + / c2
®

!' / / C2

(C\ -C2 C\\ C2

<8> + ®) ;2,
C2 1

(v c2
Join± := I <g> + <g> I ;2

\ C2 V
Join^ '•= Ci-C2,
Joins := Joini '•= !'•

® ;«,

166 A Calculus for Program Construction

It is easy to check that if C2 is antisymmetric, Joirii (1 < i < 7) as
defined are functional relations. Thus, the term on the right hand side of
(7.27) stands for a functional relation. From Lemma 7.8 and Thm. 2.3.18,

Ri
V
F 1 ^
v
F2)

V
<g>

1 (P \
®

V p J

+ DRAt-,2;

+ Bfipi.z;

+ D^Rth2;

;

I

V
Ri
V
Fi

fli
V
F2

Fi
V
F 2

C\-C2

®
(d2 \

®
\c2 j

v i
, V ;

P \

V (
V ;
P \

P (
V ;
P \

C\ \C2

+ /

V
C\C2

®
c2

C\C2

®
C?2

r
® +
c2

®
r \ +
®
c2 j

Ci;d 2

+ ®
r

Ci;d 2

+ ®
r

d2 \
® ;2
1' /

Ci ;C2
®

/ c2 \
®

v r ;
\ -

;*
/

\ -u y

\

/

r
®
2

+ Dfi,^i,^2;#i;(Ci-c2) + ^ R . i . ^ ^ n P + £>- ,H^I , 2 ; -F2 ;P .

We then finally have

P = G2;C1 • (G2\Ci -> C2) A C2-C2<V A Easy(Vb;P)

=> GenDSzC(P,V b;P, DRyit2, Spliti, Ai, Joini,. • •,

-.i?,-ii,2, Split?, AT, Join?) . (7.28)

If we use G\ instead of G2, and define
DR,I

DR^

D-,R,1

Al :=
A2 :=

A3 :=

:= Dom{Rl)-Dom{F1;P),
:= D<rni{Ri)—>Dom{Fi;P),
:= -,Dom{Rl)-Dom{Fl;P),

V®P, Joirix := ((Ci-C2

1', Join2 := Ci-C2 ,
P, Joins := 1',

Splits :=
Split2 :=
Splits :=

® C2) + (Ci

B i V F i ,
i?l,

fl,
;<?2 ® i ')) ; i

we can prove, under the assumption that C2 is antisymmetric, that

P = Gi;C1 • (Gi;Ci -> C2) A C 2 - C 2 < r A £as i / (l ' 6 ;P)

=> GenDkC(P,Vb;P,DR:i,Spliti,Ai,Joini,

DR^i,Split2, A2, Join2, £>-,fi,i,Splits, A3, Join3) . (7.29)

Examples 167

7.6.1.1 Finding the Minimum Element in a List

Let the relation Has C List(Nat) x Nat be defined by the condition

Has = Hd + Tl;Has .

Has is a generator of type G\. Let us consider the problem of finding
the minimum element in a list. The problem can be specified in first-order
logic by the formula

IMinx «=>• IHasx A Vy(lHasy => x<y) . (7.30)

The abstract relational specification, obtained from (7.30), is given by
the equation

Min = Has • (Has —• •<) .

Since the relation •< is antisymmetric and Easy(Vi,i ;Min) holds (the
minimum of a list with just one element is that element), taking C\ := V
and C2 := •< in (7.29) we have

GenDkC(Min, VLi;Hd,Dom (Hd) -Dom(Tl;Min), HdV Tl,

V ®Min, Joini, Dom (Hd) •-•Dom (Tl;Min), Hd, V,

1'jvat,^Dom(Hd) •Dam(Tl\Min), Tl,Min, V), (7.31)

where Join\ is defined by the condition

Jmni = ((l ' -X ® <) + (V;< ® 1')) ;2 .

Since ^ is reflexive, 1' • < — VNat- Notice also that •< = > .̂ We then
have

Jomi = ((l '®>:) + (h®V));2,

which is a specification of the problem minjnum that finds the minimum
between two numbers.

Since Dom(Hd) = VL>-o and Dom (Tl;Min) = VL>-i, it is clear that

Dom (Hd) • -iDom (Tl; Min) = 1' Li,

and

•^Dom (Hd) • Dom (Tl; Min) = 0 .

168 A Calculus for Program Construction

Recalling formulas (7.14) and (7.28), the part of the algorithm given by

{Dom {Hd) • ̂ Dom {Tl; Min)) ; Hd; 1'; 1' jvot

is subsumed by the base case of the algorithm. Also, since the part of the
algorithm given by the term

(•^Dom {Hd) • Dom {Tl; Min)) ; Tl; Min; 1'

equals 0 (because -iDom(Hd) -Dom{Tl;Min) = 0), (7.31) is equivalent to

GenD&C(Min,VLi;Hd,VLyi,HdVTl,V®Min,Joini) . (7.32)

Therefore, from (7.32) and (7.14) the following algorithm (in fork alge­
braic form) is immediately at hand:

Hd V
Min — Vii;Hd + V£>-i; V ; (8) ;min_num . (7.33)

Tl Min

The algorithm presented in (7.33) corresponds to the following recursive
function:

Function Min(l : List(Nat)) : Nat
Begin

If Length(l) = 1 Then
«- Hd(l)

Else
<— minjnum {Hd {I), Min {Tl (/)))

End If
End.

7.6.1.2 Finding the Minimum Common Ancestor

In [G. A. Baum et al. (1996)] we presented as an example the derivation
of an algorithm for finding the minimum common ancestor of a pair of
nodes in a binary tree (See Fig. 7.3). The problem is informally specified
as follows:

Given a binary tree t and two nodes x and y, find that
node a in t that is the closest ancestor of x and y.

Examples 169

MCA{t,d,e)=b.

a = MCA(t, a, d) = MCA(t, a, c)
= MCA(t, c, e)

p = MCA(t, c, c)

Fig. 7.3 Some computations of the relation MCA for a tree t.

Let us use a relation HA C (TVee(a) x a) x a (HA abbreviating has
ancestor), which is meant to produce, given a tree t and a node x, the
ancestors of x in t. A formal specification of a relation MCA capturing the
problem in the language of the elementary theory of fork relations is given
by

t-k (x -k y)MCAa t-kxHAa A t-kyHAa A

Vz((t*xHAz A t-kyHAz) => t*aHAz),

and a specification of HA is given by the formula*:

t-kxHAa <=$• 3t' (t^t' A t'root a A t'inx) .

In [G. A. Baum et al. (1996)] we gave the following abstract relational
specification for the relation HA:

HA
3

1'

/ n;root \
V

V

;7r,

tBy 3 w e denote the relation that relates a tree with its subtrees, by root the relation
that relates a tree with its root node, and by in the relation that relates a tree with its
elements. By VTk we denote the filter over tree of height k, by VT^k the filter over
tree whose height is greater than k, and by 1'T* we denote the filter over the set of all
trees.

170 A Calculus for Program Construction

and defined a relation CA C (Tree(a) x (a X a)) X a (characterizing the
common ancestors of a pair of nodes in a tree) by

CA = ((l'<8>7r) \HA) • ((l '®p) ;HA) .

In [G. A. Baum et al. (1996), p. 188] we derived the following recursive
version of the relation CA:

Prom the previously defined relations, we presented the following ab­
stract relational specification of the relation MCA:

MCA = ((TTV CA) -(CA -> HA)) ;p .

If we consider the relation MCA" defined by

MCA" = (TT V CA) -{CA -+ HA),

we cannot apply the generic algorithm derived in Section 7.6.1 because the
specification does not have the right pattern (compare with (7.22)).

In order to find an adequate specification for MCA", we define relations
HA' and CA' with types

HA' C (Tree(a) x a) x (Tree(a) x a)

and

CA' C (Tree(a) x (Tree(a) x (a x a))) x (Tree{a) x a)

Examples 171

as follows:

and

CA' =

+

1'T*
®

r T i \ ;
®

l 'T*
®

r T x i \
®
i' /

l'T*
®

®
1' /

l 'T*
®

®
1' /

SA' = vrViM,

l'
®

/ root \

i'
®

; (((in \ A

H i

1'
®

; / right \ ;Ci4'

I ?)
Fi

V
®

; f left \ -CA' .

(?)

;7r;root

+

F2

Notice that the relation CA' differs from the relation CA in that it has
an extra input (of type Tree(a)) which is preserved and returned untouched
as output.

It is easy to see that if we define MCA' using HA' and CA' by

MCA' = CA' • (CA' -y HA') ,

then MCA0 = (TTVI') ;MCA', and thus,

MCA = (nW);MCA';p. (7.34)

Since CA' is a generator of type Gi and /Issx and Assi hold, we are in
the right position to use the generic algorithm derived in Section 7.6.1 in
order to find an algorithm computing the relation MCA'. Before applying

172 A Calculus for Program Construction

the schema, notice that

Dom (MCA') =
l'T*

(Dom(in®Tr) ;2) -Dom ((in®p) ;2)

i.e., MCA' is denned in an input (t\, (t2, (x, y})) whenever x and y are nodes
of t2. As an elementary property of trees,

Dom (Fi;MCA') -Dom (F2;MCA') = 0,

i.e., nodes cannot appear both in the left and right subtrees. Also, notice
that

^Dom (R{) • Dom (Ft; MCA') = ->Dam (R{) • Dom (F2; MCA') = 0,

i.e., if a node is not in a tree, then it is neither in the left nor in the right
subtrees. Thus, from the previous reasoning, the following formula holds:

GenDkC(MCA,,Ybase;MCA',DRiit-<t,R1VF1,V®MCA,,Joini,

£>*,-a,2, Ri V F 2 , 1 ' ®MCA', Join2, DRt^2, Ru 1', 1'), (7.35)

where

Vbaae;MCA'

and

Join! = Join2 = ((HA'"®V) + (V®HA'")) ;2 .

Notice that by Thm. 3.2.17, Join,! and Join2 can be rewritten as

Dom((V®HA');2);p + Dom ((HA'®V) ;2) ;TT .

Examples 173

We now have

Ri V Ri V
Dfl,l,-,2; V ; ® ; Joini + DR^I^] V ; ® \J0in2

Fi MCA' F2 MC4'
= {by Thm. 3.2.9}

1' Ri V V R! V
-Dfi,l,-i2; V ; ® ; ® ; Joini + Df i r i , 2 ; V ; ® ; ® ;Join2

Fi 1' MCA' F2 1' MCA'
= {by Joini = Joini and Ax. 2}

1' 1' \ Ri V
DR,I,^21 V + D R p l , 2 ; V I ; ® ; ® ; Joini.

Fi F2 / 1' MCA'

From formula (7.34), the following program computes the relation MCA.

Function MCA(t : Tree(a); x,y : a) : a
Var

aux : Tree(oj),
o : a.

Begin
(aux,o) := MCA'(t,t,x,y),
<— o

End.

A program to compute the relation MCA' is obtained from formula
(7.35) and the derivation above.

Function MCA'(ti,t2 : Tree(a); x,y : a) : Tree(a) x a
Var

e : a,
t', t" : Tree(o:).

Begin
If Heigth(t2) = 1 Then

If x = y = root(t2) Then
<- (ti,x)

Else
If x, y occur in left(t2) or x, y occur in right(t2) Then

If x, y occur in left(t2) Then
f := left(t2)

Else
t' := right(t2)

file:///J0in2

174 A Calculus for Program Construction

End If
r := root(t2),
(t",e) := MCA'fat^y),
If ti = t" and r is an ancestor of e in t" Then

If ti = t" and e is an ancestor of r in ii Then

<-<*!, r)
Else

<- (ii,rooi(t2))
End If

End If
End.

Notice that in order to apply the strategy and obtain an algorithm it
was necessary to perform an embedding when defining relations HA' and
CA'. This embedding was motivated by the methodology, and thus the
following heuristic arises.

Heuristic 7.4 In order to obtain a generator and a specification of the
right form, it may be necessary to perform some embeddings.

The algorithm can be further optimized, but, as it stands now, it allows
us to find a solution for computing the relation MCA. The experience we
gained from comparing the previous derivation with the one given in [G. A.
Baum et al. (1996)], is that once the generic algorithm is available, then
finding the correct embedding takes only a short amount of time and an
algorithm is easily obtained. In the derivation given in [G. A. Baum et
al. (1996)], we carried out all the derivation of the generic algorithm, plus
details that did not help at all in deriving that algorithm. Also, from a
methodological point of view, the approach followed here seems much more
appropriate.

7.6.2 Second Example

For this example we will need the following definition.

Definition 7.1 A list I is said to be a contiguous sublist of a list I' if
there exist lists li and ^ such that V — l\ & / & l2, where &; denotes list
concatenation.

Examples 175

Let us now consider the following generic problem.

Given a list I, find the contiguous sublists I' of I satisfy­
ing (a) a condition ci, and (6) Z' is /-maximal with respect
to all the contiguous sublists of I that satisfy the condition
c\ (/ : List(Int) —> Int, functional).

If we assume that we already have a specification for the generator of
contiguous sublists GCS, then the problem is specified by the following
formula in the elementary theory of fork relations:

IPV <̂ =>-

IGCSV Aci(Z') AVi" (IGCSl" Ad(i ") ^ f(l')hf(l")) • (7.36)

From the first-order specification given in (7.36), we immediately obtain
the following abstract relational specification:

P=GCS;C1 • (GCS-Ci - • f;hj) . (7.37)

The generator of contiguous sublists GCS is specified by the following
abstract relational equation

GCS = VLx + VLyi;STA + V Lyi;Tl;GCS, (7.38)

where the relation STA is specified by the recursive equation

Ed Hd

STA = VLi + VLyi; V ;Cons + VLyi; V ;Cons . (7.39)
CNil Tl-STA

Intuitively, relation STA generates the contiguous sublists that STArt
in the head of the list, and thus, the process of generating all the contiguous
sublists can be divided between generating the contiguous sublists starting
in the head, and generating the contiguous sublists located in the tail of
the list.

Since for lists of length zero or one the problem is easy, in order to derive
a divide-and-conquer algorithm for this problem it suffices to find relations
Split, Qi, Q2 and Join such that

Recomp {VLyi ;P, Split, Q0, Qi,Join)

holds.

176 A Calculus for Program Construction

= { Unfolding the specification of P given in (7.37) }

VL*I;(GCS;CI • [GCS;Cx - f\t;f))

= { Unfolding the definition of GCS (cf. (7.38)) }
(VLyi;STA + VL^1;Tl;GCS);C1

• ((l ' L yi ;5TA + l ' L x , ; T/;GC5);Ci -> / ; h ; /)
= {By Ax. 2}

(VL>-i;STA;Ci + l ' ^ i ; 77; GCS;d)

•((VL>i;STA;Ci + VL>i;Tl;GCS;Ci) -» / ; £ ; /)
= { By (7.4) and elementary Boolean algebra }

VL»i;STA;Ci • (sTA;d -+ / ; £ ; /) • (77;GGS;Ci - f;f,f)

+ VL^i;Tl;GCS;C! • [STA;Ci - / ; > ; ; /) • (jVjGGSjd - / ; > : ; /) •

Thus,

((l'L^i^rxjco
• (STA;d - / ; > : ; /) • {Tl-^GCS^ - / ; > : ; /))

• (STX;Ci -» / ; > : ; /) • (TliGCSid - / ; > : ; /)) • (7.40)

Let us consider now the relation MAXSTA defined by the equation

MAXSTA = STA\CX • (sTA-d -* f;h;f) . (7.41)

In order to continue with the derivation we make the following assump­
tions:

As8! : r L i ; C i = l ' L i ,

Ass2 :Dom(f) = VL.,

Ass3 : Cons;Ci = {V®Ci) ;C2;Cons, for some C2 < V,

AsSi : (l ' /nt® 1') ; Cons;f = (g®f) ;Add, with g C Int x Int functional,

1' / 1' \ V
Ass5 : <g> ; C 2 = L>om ® ; C 2 I ; <g>

STA-yCx V MAXSTA / STMjCi

ASSQ : Cjyn;f = Co, (the empty list has /-value 0).

Examples 177

In Section 7.7 a complete derivation of the following divide-and-conquer
algorithm for MAXSTA is presented.

Ed V
MAXSTA = VLi + 1 V I ; V ; ® ;JoinMAXSTA, (7.42)

Tl MAXSTA

where the relation JoiriMAXSTA is denned by the following conditions

£ > i : = D o m (/ ; r < ; l ' o) ,

A>:=£>om(/;^;r0),

and

JoiriMAXSTA •=

I V V \ 1'
C2 ; ® + ® ; Cons + -iC2; <8> ; Cons .

\ Di;Cmi D2 J CNU

Once we have a divide-and-conquer algorithm for computing the relation
MAXSTA, we can continue with the derivation of a divide-and-conquer
algorithm solving the original problem P.

Recalling (7.40), let us concentrate first on the relation E defined by

E:={VL>i\STA;C{)

• (sTA;d - / ; > : ; /) • (j7 ;GC5;Ci -» / ; > = ; /) •

E = l 'Lvi ;MAXSTA • (Tl;GCS;Ci -* / ; h ; /) (by (7.41))

= VL>-i; MAXSTA- Tl;(GCS;d -» f;h;f) (by Lemma 7.4)

= VL^i;MAXSTA • Tl;GCS;d; (/ ; h ; /) " (by (7.3))

= l ' i ^ i ;MA.XST4 • Tl;GCS;Cx;f;£;f (by Ax. 6)

= lVi ;MAASTi4 • I 7 ; G C 5 ; C i ; / ; ^ ; /
(by Thms. 2.3.19, 2.3.21 and £ = =<)

VLyi;MAXSTA • Tl;GCS\Cx\f\^\f. (by < = y)

178 A Calculus for Program Construction

Then,

E = VLyl ;MAXSTA • Tl;GCS;CvJ-yJ . (7.43)

Since, by definition, the relation P produces as output those contiguous
subsequences satisfying C\ that are also /-maximal,

G G S ; C i ; / ; ^ = P ; / ; > ~ ,

and thus,

E = VLyi; MAXSTA • Tl;P;f;yJ . (7.44)

Notice that P returns /-maximal sequences, and therefore, even though
there may be several /-maximal subsequences for a given sequence, their
/-value must be the same. Thus, the relation P ; / is functional. This can
be proved syntactically by showing that (P ; /) " ; (P ; /) < 1', and is left as
an exercise.

Resuming the derivation for the relation E, we have

E=VL»i; MAXSTA- Tl;P;f;y,f (by (7.44))

= l'L>-i ;MAXSTA • 77 ;P ; / ; "X; / (by Thms. 2.3.19 and 2.3.21)

= VL^; MAXSTA- Tl;P;f;l;f (by^=^)

= VL>.i;(MAXSTA- T / ; P ; / ; ^ ; /) (by Thm. 2.3.22)

MAXSTA
= VLyi; | V | ;2 (by Thm. 3.2.1)

r/;P;/;d;/
MAXSTA

VLyi; | V] ; | ® | ;2 (by Thm. 3.2.9)
Tl;P

MAXSTA
= l ' i ^ i ; | V I ;Dom I ® ;2 | ;TT. (by Thm. 3.2.19)

Tl;P J \ / ; r <

Let us concentrate now on the relation F defined by

F := 1' ^>-1; Tl; GCS; C\

• (sTA;d -» / ; > : ; /) • (TI;GCS;CX - / ; > : ; /) .

Examples 179

A derivation similar to the one used for relation E in order to arrive to
(7.43) shows that

F = VLy1-Tl;P • STA-C^f-^-J . (7.45)

Since by definition the relation MAXSTA produces /-maximal subse­
quences that start in the head of the list given as input,

5Ti4;Ci;/;>- = MAXSTA; f;^ . (7.46)

Thus,

F = YLyi;Tl;P • STA;Cx;f;^;f (by (7.45))

= VLy1;Tl;P • MAXSTA; f;y;f. (by (7.46))

We then deduce that

F = VLy!;Tl;P • MAXSTA;f;y ;f . (7.47)

A similar proof to the one showing that the relation P;f is functional,
shows that MAXSTA;/ is also functional. Then,

F = VLy1;Tl;P • MAXSTA;f;y;f (by (7.47))

= l 'Lxi ;Tl;P • MAXSTA; f;~;f (by Thms. 2.3.19 and 2.3.21)

= VL.i;Tl;P • MAXSTA;/;=<;/ (by^=d)

= VLyi;(Tl;P • MAXSTA;f;<;f) (by Thm. 2.3.22)

MAXSTA;f;<;f \
YLyi; | V \;2 (by Thm. 3.2.1)

/ ; = < ; / \
= VL»i;\ V | ; | ® \;2 (by Thm. 3.2.9)

l ' is- i ; | V | ;Dom I ® ;2 J ;p. (by Thm. 3.2.19)

We have now arrived to the first algorithmic expression for computing
the relation P. Since VLi;P — V Li and by (7.40) we have

VLyi;P = E + F,

180 A Calculus for Program Construction

then P equals

/ MAXSTA \ / /
VLi + l ' L ^ i ; V ;Dom <S> ;2 | ;TT

V T/;P / \ / ; ^

V T/;P / \ /

Let us define the filters D3 and D4 by:

D3:=Dom((f ® / ; d) ; S) , D4 := Dom ((f; ± ® /) ;2)

Applying Ax. 2, we arrive at the equation

P = l 'L i + I V . ; V ;(£»3;TT + D4;p) . (7.48)
77;P

Even though (7.48) is algorithmic, the algorithm can be improved. Let
us define the relation MAXF by the equation

MAXF = VLyi; (MAXSTA V Tl;P) .

Unfolding the definitions for relations MAXSTA and P given in (7.42)
and (7.48), and applying elementary properties of fork algebras,

MAXF = VLyi;

(Hd V

V ; ® ;JoinMAXSTA
Tl MAXSTA

V
V Tl;VLi

Examples 181

+ 1' L ^ 1 :

/ Hd V
V ; <g> \JoiUMAXSTA
TI MAXSTA

V
MAXSTA

TI; V ;(D3;ir + D4;p)

- v '

Let us analyze terms T\ and T2, one at a time. For term Ti, the subterm
Tl;V L\ equals 1' i?\Tl. This implies that the input for the whole term must
be restricted to lists of length two. Thus,

Ti = VL2-,

(Hd V

V ; <g> \JoiUMAXSTA
TI MAXSTA

V
\ TI

(7.49)

We then proceed as follows:

r

T I = I 'L* ;

/ Hd
V ; <g> ;JoinMAXSTA

TI MAXSTA
V

V TI

(by (7.49))

= VL2;

/

\

Hd
= 1'L»; V

Tl

Hd
V ;
Tl

/

>

I

r
® ; JoiriMAXSTA

MAXSTA

(Hh „
\ Tl J
V
® ; JoiriMAxsTA

MAXSTA
V
P

\

)

\

)

(by Thm. 3.2.2)

(by Thm. 3.2.4)

file:///JoiUMAXSTA
file:///JoiUMAXSTA

182 A Calculus {or Program Construction

Since the lists that will reach the input of the relation MAXSTA are all
of length one, and l'x,i; MAXSTA = l '^i , we then conclude

Ti = l'jra ; (HdV Tl) ; {JoiUMAXSTA^P) •

Regarding term T2, a derivation similar to the one performed from 7\
allows us to prove that

Ed V
T2>VL^2- V ; ®

Tl MAXF

(V \
® ; JoiUMAXSTA

\ P;(D3;TT + DA;p) J

(7.50)

Notice that even though we do not arrive at an equality, the term on
the right hand side of (7.50) has the same domain as term T2, and therefore
it is a refinement. Thus, the equation

MAXF = l 'L 2 ; (ffdV 27) ; (JOIUMAXSTA VP)

I V

Ed

+ iv»; v ;
Tl MAXF

\
<8> ; JOIUMAXSTA

IT

V
V p;(D3;ir + D4;p) J

(7.51)

is a divide-and-conquer algorithm computing a refinement of the relation
MAXF. Equation (7.51) can be slightly optimized, by using properties of
lists and Ax. 2, to the equation

/
Ed

MAXF = VLh2] V
Tl

V

®
JoiUMAXSTA

V

P

V V

+
VL»i MAXF

I v \\
<8> \JoiUMAXSTA

V
V p;(D3;ir + D4;p)))

(7.52)

file:///JoiUMAXSTA

Examples 183

Finally, the problem P is solved using the auxiliary algorithm MAXF
as indicated by the following equation:

P = VLx + l V i ;MAXF; {D3;7T + D^p) . (7.53)

Eq. (7.52) corresponds to the following program.

Function MAXF(l : List(Int)) : List(Int) x List(Int)
Var h : Int, t, o\, o2, h, h '• List(Int),
Begin

h := Hd(l), t := 77(0,
If Length(t) = 1 Then

If C 2 (M) Then
If f(t) < 0 Then ox := [h]
Else oi := I
End If

Else
o\ := [h]

End If
<-{oi,t)

Else
<ii,i2> :=MAXF(t),
If C2(h,k) Then

If f(k) < 0 Then 0l := [h]
Else ox :— [h : l\]
End If

Else
01 := [h]

End If
If f(h) > f(h) Then o2 := lt

Else 02 := I2
End If
<- (01,0-2),

End If
End.

In the remaining part of this section we will derive algorithms for solving
two problems whose specifications are instances of the generic problem P.
The problems that we will use as examples are related to problems already

184 A Calculus for Program Construction

studied in the literature. The first problem consists of finding the sublist
with maximum sum. In [D. Smith (1987)] a divide-and-conquer algorithm
for solving this problem is derived. The second problem consists of finding
the longest plateau. An algorithm solving a weakened version of this prob­
lem - the input list is assumed to be sorted - is derived in [D. Gries (1981)]
using the predicate transformer wp (weakest precondition).

7.6.2.1 Finding the Contiguous Sublists of Maximum Sum

The problem of finding a contiguous sublist of maximum sum was treated as
a case study in [D. Smith (1987)]. There, a divide-and-conquer algorithm is
derived for solving this specific problem. The problem is informally specified
as follows.

Given a list / having integer numbers as elements, find
a contiguous sublist of I with maximum sum.

This problem has a clear specification in the elementary theory of fork
relations given by the formula:

I MAXSUM I1 4=^

IGCSV AVl"(lGCSl" => Sum(l')hSum(l")), (7.54)

where Sum C List(Int) x Int computes the sum of the elements of the
list given as input. A relational specification for MAXSUM is given by the
following equation:

MAXSUM = GCS • (GCS -» Sum; h ;Sum") .

If we take C\ := 1', then (7.54) has the same shape as (7.37). Let us
check that assumptions Ass\-Ass§ hold.

Since C\ = V, V^i ;Ci = l '^i , and thus Assi holds.
Since Dom (Sum) = 1'L*, ASS^ also holds.
If we define C<i := 1',

r r
Cons;C\ = Cons;V — Cons = ig> ;V;Cons = ® \C2\C0ns,

V Cl

and Assz holds.

file:///C2/C0ns

Examples 185

Since

1' Int 1' Int

<g> ; Cons;Sum = <g> ;.<4<id,

1' Sum

denning g := V j n t we are done with Ass^.
Regarding Asss, notice that

r r r

® ; C 2 = <g> ;1 ' = <g> .

Notice also that since Dom (MAXSTA) = VL±i,

I v \ (v \ v
Dom <g> ;Ci \ — Dom <g> = <g>

\ MAXSTA / \ MAXSTA J l 'Lxi
Then,

/ r \ r r r r
Dom I <g) ; C 2 ; <g> = <g> ; <g> = ® ,

\ MAXSTA J STA;C! VLhi STA STA

and Asss holds.
Finally, since C^ulSum = Co, Ass6 holds.
If we now instantiate the relational algorithms given in (7.52) and (7.53),

we have

MAXSUM = VLi + VLyi ;MAXF; (D3;n + D4;p), (7.55)

where

Sum \ l Sum; ^
D3 = Dom (<g> ; 2\ and £>4 = Dom ® ; 2

Sum; < I \ Sum

186 A Calculus for Program Construction

The relation MAXF is defined by

Hd
MAXF = VLi:2; V ;

Tl

V JoiriMAXSTA

® ; V +
IV p

V V
® ; ®

l ' i ^ i MAXF

(V \
® ;JoiriMAXSTA

•K

V
V p;(D3;n + Di-p) J

(7.56)

where

JoiriMAXSTA =

V V \
(g> + <gi I ;Cons.

Dom (Sum; •< ;l'o) ;CNU Dom(Sum;>:;l'o) J

Equations (7.55) and (7.56) correspond to the algorithms below.

Function MAXSUM(l : List(Int)) : List(Int)
Var

h, h '• List(Int)
Begin

If Length(l) = 1 Then

Else
(h,h) :=MAXF(l)
If Sum(li) > Sum(l2) Then

< - J i
Else

End If
End If

End.

Examples 187

Function MAXF(l : List(Int)) : List(Int) x List(Int)
Var h : Int, t, o\, 02, h, h '• List(Int)
Begin

h := Hd(l), t := Tl{l)
If Length{t) = 1 Then

If Sum(t) < 0 Then 01 := [h]
Else o\ := I
End If

Else
(h,l2) :=MAXF(t)
If Sumih) < 0 Then oj := [h]
Else 01 := [/i: li]
End If
If Sum(li) > Sumfo) Then 02 := h
Else 02 := 2̂
End If
«- <oi,o2)

End If
End.

7.6.2.2 Finding the Longest Plateau

The problem we will solve in this section is a strengthened version of a
problem used as example in [D. Gries (1981)]. Therein, given a sorted list,
it is given to find the longest plateau, i.e., the longest contiguous sublist
of the input list whose elements are all the same. Here we will drop the
assumption of the input list being sorted, and will derive an algorithm for
finding the longest plateau in an arbitrary list of integers. The problem is
informally specified by the following sentence.

Given a list /, find the longest plateau p in /.

A formal specification is given by the following formula in the elementary
theory of fork relations:

ILPLATEAUp <=> IGCSp A Plateau(p)

A Vp' (IGCSp' A Plateau(p') =>• Length(p)hLength(p')), (7.57)

188 A Calculus for Program Construction

where the unary predicate Plateau is denned by the formula

Plateau(p) <==> VxVy (pHasx ApHasy => x = y) .

A relational specification of the problem LPLATEAU (obtained from
(7.57)) is given by the equation

LPLATEAU = (GCS; Plateau)

• (GCS;Plateau -> Length;>z;Length"), (7.58)

where the relation Plateau is defined by the recursive equation

Hd V (V \
Plateau = VL±i + l 'i>-i; V ; <g> ;Dom I <g> ;2 I ;Cons .

Tl Plateau \ Hd J

Notice that (7.58) has the same shape as (7.37). Let us check that
assumptions Assi-Asse hold.

Assi is trivially true. Since Length is total on the set of lists, Ass^ also
holds. Let us define

C2 = (r ® r L o) + Dom((V®Hd);2) .

Then,

Cons; C\

= Cons; Plateau

I Hd V I V
= Cons; I r L x i + VLyi; V ; ® ;Dom

\ Tl Plateau \ Hd

Hd V I V
= Cons;V L-<i + Cons;V Lyi; V ; <g> ;Dom\ ®

Tl Plateau \ Hd

V V Hd V I V \
= <8> ; Cons + ® ; Cons; V ; ® ; Dom I ® ; 2 1 ; Cons

VLo l ' L v i Tl Plateau \ Hd)

V V V I V \
— ® ;Cons + ® ; ® ;Dom [® ;2 J ;Cons

Plateau;VLo 1 ' L ^ 1 Plateau \ Hd J

V V / V
= ® ; Cons + ® ; Dom j <g> ; 2 | ; Cons

Plateau;!'Lo Plateau \ Hd

Examples 189

V (V (V

® ; <8> + Dom ® ; 2 | | ; Cons
Plateau \ V Lo \ Hd

V
<S) \C2\C0ns.

Plateau

Thus, Assz also holds.
Regarding ASS4, notice that

l ' / n t l ' / n t i ^ l

® ; Cons; Length = <g> ;̂ 4cW,
1' Length

and defining <? := l ' / n t ; Ci, ^4sS4 holds.
In a similar way assumptions Asss and Ass§ are proved.
If we now instantiate the relational algorithms given in (7.52) and (7.53),

we obtain

LPLA TEA U = VLi + V L11; MAXF; (L>3; ir + L>4; p) , (7.59)

where

(Length \ / Length; ^

(2) ; I J and D4 = Dom j ® ; I?
Length; •<) \ Length

The relation M^XF is defined by

Hd
MAXF = VL>i; V ;

Tl

V JoinMAXSTA

<g> ; V +

1 ' L I P

V V
<8> ; ®

l'L>.i AL4XF

® ; JOIUMAXSTA

n
V

V P;(£» 3 ;TT + £>4;p) / -

file:///C2/C0ns

190 A Calculus for Program Construction

where

JoinMAXSTA =

/ r r
C2 ; <8> + ® | ;Cons

\ Dom (Length;^ ;1'0) ;CNU Dom (Length; >z ;1'0)

r
+ -1C2; <S> ; Cons .

Cm;

Notice that Dom (Length; d ; l 'o) = l'z,° and Dom (Length; >z;V0) =
l 'Lxo. Then,

/ r r \ l'
JOIUMAXSTA = C2; <8> + <8> ; Cons + -iC2; <g> ; Cons

r r
= ^2 ; ® ;Cons + -iC2; (g) ;Cons.

V Lyo Cf/ii

Since C2 = (l ' lgl '^o) +£)om ((V®Hd) ;2), simple equational reason­
ing allows to deduce that

-iC2 = (V®VL>o);^Dom((V®Hd);2) .

Then,

r
® ; JoinMAXSTA =

<g> ; Dom <g> ;,2 +->Dom \ ® ;2 \ ; ®) ; Cons. (7.60)
IV V V Hd) \Hd J CNil

Notice also that

r r
® ;JoinMAXSTA= ® ;T . (7-61)

Examples 191

Thus,

VL>-2;MAXF
= {by (7.60) and (7.61)}

Hd
V
Tl

V T V
® ; V + ®

MAXF

= {by Thm. 3.2.9 and Ax. 2 }

V ;
Tl

7T

V

\ p; (D 3 ;7r + D4;p))

V V V
® ; V +

/ M

l ' L M MAXF
V p;(D3;* + Di]P) J

T
®
V

We then have

Hd
MAXF = VLt2; V ;

Tl

V V
® ; V +

r r
® ; ® 7T

V

T
; ® . (7 .62)

r
\ p;(D3;n + Df,p) / .

Equations (7.59) and (7.62) correspond to the algorithms below.

Function LPLATEAU(l : List(Int)) : List(Int)
Var

Zi, Z2 : List(Int)
Begin

If Length(l) = 1 Then <- I
Else

(h,l2) :=MAXF(l)
If Length(li) > Length(l2) Then <— li
Else <- Z2

End If
End If

End.

192 A Calculus for Program Construction

Funct ion MAXF(l : List(Int)) : List(Int) x List(Int)
Var h : Int , t, o\, 02, h, h • List(Int)
Begin

h := Hd(l), t := Tl{l)
If Length(t) = 1 Then

°2 := t, h '•— t
Else

{WM) :=MAXF{t)
If Length(li) > Length(l2) Then o2 := h
Else 02 := h
End If

E n d If
If h = Hd{h) T h e n 0 l := [h : h]
Else o\ := [h]
E n d If

* - (01 ,02)

End.

7.7 A D f e C Algor i thm for MAXSTA

In this section we include the complete derivation of the algorithm for
computing the relation MAXSTA given in (7.42). We start by deriving the
base case of the algorithm, that is, when the input list has length 1.

VLi; MAXSTA

= VLi;(sTA;C1 • (STA;d - / ; > : ; /)) (by (7.41))

= l 'Li;STi4;Ci • 1'L»; (STA;d - f;hj) (by Thm. 2.3.17)

= I V ;Ci • l ' L i ; (l ' L i ;52M;Ci - » / ; > : ; /) (by Lemma 7.4)

= l 'L i ; d • l ' L l ; (l ' L , j d -» / ; >r ; /) (by (7.39))

= r i i ; C 1 • l ' L i ; C i ; (/ ; > : ; /) " (by Lemma 7.3)

= 1'LI - 1 ' L I ; (/ ; > : ; /) " (byA S S l)

A DUG Algorithm for MAXSTA 193

= 1'L> • 1'LI ; / ; £ ; / (by Ax. 6)

= l ' i i • VLi;f;l;f. (by Ax. 4 and £ = <)

Notice also that

i ' L i ; / ; d ; / > i ' i i ; / ; / (= < > i ' j » t)

> l ' t i ; / ? o m (/) (byDef. 2.5)

= 1 ' L I ; 1 ' L - (by Ass2)

= l ' L i - l ' L . (by Thm. 2.3.7)

= 1' £i. (property of lists)

Thus, since l 'L i ; / ; : < ; / > l ' L i ,

V Li; MAXSTA = V Li . (7.63)

Once the base case has been derived, let us concentrate on the derivation
of the recursive case. Since we are looking for a divide-and-conquer solution,
we must find relations Split, Q\, Q2 and Join such that the predicate

Recomp (VL>-i ;MAXSTA, Split,Qi,Q2, Join)

holds.
If we unfold the definition of STA in MAXSTA, and apply properties of

the relational implication, we can prove that

V L^ 1; MAXSTA =

Hd \ I Hd

1 ' L - I ; V ;Cons;CA • V iCons;^ - • / ; > ; ; /

C-Nil I \ ^Nil

Hd
V ;C*ons;Ci - / ; > : ; /

Tl;STA

Hd \ / Hd

+ U V ; V ; C O T W ; C I) • V ;Coru;Ci -» f;fj
Tl;STA J \ CNil

Hd

T7;ST.A

194 A Calculus for Program Construction

We will call A the first term in the sum, and B the second one. Let us
analyze term A first.

Hd \ I Hd
A = [l ' z , x i ; V ;Cons;Ci\ • V ;Cons;C1;f;<;f[

CjVil / \ Cffu

Hd
V ;Cons;Ci -» f;hj) (by Lemma 7.3)

Tl;STA

Hd I Hd
= VLyi; V ;Cons;Ci • V ; Cons;d -> / ; h ; / | (by Thm. 2.3.17)

CAW \ 77;S7V1

Hd (Hd \

(by Ass\ and ASS3)

Hd I Hd
= l ' L) - i ; V ;Con« • V ;C2;Cons -+ f;h;f

Tl;CNil \ Tl;STA;d

(by Def. 2.5 and Thm. 2.3.14)

Hd V / Hd V
= l ' t > - i ; V ; <g> ;Cons • I V ; <g> ;C 2 ;Cons -> / ; > ; ; / '

T/ C M , \ 77 STA;Ci

(by Thm. 3.2.9)

Hd I V I V
= l ' L n ; V ; ® ;Cems • <g> ;C2;Cons -> / ; > : ; /

r i V CNil \ STA;d
(by Thm. 2.3.17 and Lemma 7.4)

Hd / 1' 1'
= l ' L x i ; V ; ® ;Cons • <g> ; C 2 ; Cons; (/ ; > : ; /) " (by (7.3))

Tl \ Cm STA-C-,

Hd / 1' 1' _)
= VLyi; V ; ® ;Cons • <g> \C2\Cons;f\<\f\

Tl \ Cm STA;d

(by Ax. 6 and d = b)

Hd V V _ \
= r L v i ; V ; ® ;Cons • ® \d\Cons\f;^.j\

Tl \ Cm STA;d J
(by Thms. 2.3.19 and 2.3.21)

Hd I V V \ _
= l ' L s - i ; V ; <g> ;Cons • <g> ;C*2; ConsJ; y;/ (by X = >-)

Ti \ CNil STA;d /

A D&.C Algorithm for MAXSTA 195

Hd V V g \
= l ' L >- i ; V ; ® ;Cons • ® ; C 2 ; ® ;Aci<f;>-;/ (by ASSA)

Tl \ Cm STA;CX f

Hd / V V g;h \
= VL^X\ V ; ® ;Cons • ® ; C 2 ; ® ;A<M;/ .

(by property of Add)

Then, A equals

Hd / 1' 1' g;y
VLyi; V ; ® ;CWs • <g ;<72; ® jXrfd;/ | . (7.64)

n V Cmi STA;C! / ;>-

Notice that by monotonicity of the operators involved,

r g;h l
<g> ;C2 ; (g ;Add;f < <g ;Cons . (7.65)

5 Z 4 ; d / ;>- 1

Let us define

r r g-,h
Ai = <g ;Cons • ® ;C2 ; <g> ;Add;f

Cm STA;d / ;> -

Then,

r i ' <?;>: u i
Ai = ® ;Cons • (g) ;C2j ® ;Add;f • ® ;Cons

Cm STA;C! / ; > - 1

(by Def. Ai and (7.65))

r l' g;> v O' + l'
= ® ; Cons • ® I C?2; ® ; Add; / • ® ; Cons

Cm STA;Ci / ; > - 1

(by Def. 0' and BA)

r v g;t 7~ff F~\
= ® ;Cons • <g) ; C 2 ; ® ;Add;f • I ® + ® ; Cons

Cj«, S7Vl;Ci / ;> - V 1 1 /
(by Thm. 3.2.11)

196 A Calculus for Program Construction

V V g;y I 0' 1' ^
= <g> ; Cons • ig) ; Ci; ® ; Add; / • I ® ; Cons + ® ; Cons

CNil STA;Ci f;y \ 1 1 ^

1'
= <g> ; Cons

1'
®

STA;Ci

g;h
;C2; ®

f;y
;Add;f •

0'
®
1

; Cons

(by Ax. 2)

1' ff;b u 1'
® ; C 2 ; ® ;Add;f • ® ;Cons. (by BA)

S7Vi;Ci / ; > - 1

We then have

Ai = <g> ;Cons • <g> ;C2 ; <g> ;Add;f • <g> ; Cons
Cw a STAid f;>- 1

A2

(8 ;C2 ; ® ;Add;f • <g> \Cons. (7.66)
5rA;d /;>- 1

(l'®Cjvij); Cons -yl2

v r g-y ^ o>
® \Cons • ® ;C2| ® ;Add;f • ® ;Cons (by Def. A2)

C w S 7 M ; d / ; > - 1

(by BA)

(by Thm. 2.3.21)

(by Thm. 3.2.20)

(by Thm. 2.3.20)

(by Thm. 3.2.8)

> (V®CNil) ;Cons -(0'®1) ;Cons

V
= ® ; Cons •

(•Nil

1'
= ® ; Cons •

C-NU

/ r i'
= j ® • ®

\ CNU 1

r
= ® ; Cons.

0'
® ; Cons
1

1'
® ; Cons
1

; Cons

file:///Cons
file:///Cons

A Dk.C Algorithm for MAXSTA 197

Thus,

(1' ®CJV«) ; Cons -A2 = (V ®Cmi) ; Cons . (7.67)

For the next derivation we will use the following valid property that
follows from ASS4:

g;h v v
<g> ;Add;f • ® = O . (7.68)

r
® ; Cons • A3

1' 1' <?;>: ^ 1'
® ;Cons • ® ; C 2 ; ® ;Add;f • ® ;Cons (by Def. A3)

C w , 5TA;Ci / ; > - 1

r r r
= ® ;Cons • ® ; C 2 ; <S> ;Cons (by (7.68))

Cjvii STA;d f-yj

V V V
® ;Cons • ® ; C 2 ; 0 ;Cons (by Thm. 2.3.21)

Cm STA;Ci f;yj

V
;C2) ® ;Cons (by Thm. 2.3.20)

CNil STA;d / ; > - ; /

1'
® • Dom 1 ®

v MAXSTA
;C2j

i'
; ®

STA;d
; ® ; Cons

(by Ass 5)

/ r / r \ r r
= ® • Dom ® ;C 2 ; ® ; ® ;Cons.

\ CWi, \ MAXSTA J STA;d;f;y f J
(by Thm. 3.2.10)

Since the relation MAXSTA produces /-maximal lists as output by def­
inition, then

STA\Cx\f\>- =MAXSTA;f;y . (7.69)

If we denote by D the filter Dom ((V® MAXSTA) ;C2), then the deriva-

198 A Calculus for Program Construction

tion continues as follows:

1'
® ; Cons • A3

CNU

V V
® • D; ® ;Cons (by (7.69))

Cm MAXSTAJ-yJ J

V V V \
® • (D + -iD);D; ® ; ® ;Cons (by Thm. 7.1.1)

Cjvii MAXSTA-J-y f

V V V \
® • D ; D ; ® ; ® ; Cons

CWi, MAXSTA-J ;>- f

I V V V \
+ ® • ~<D;D; ® ; ® ; Cons (by Ax. 2 and BA)

I C M , M A X S T A ; / ; ^ / /

l' r r r \
® • D;D; ® ; ® ; ® \Cons

Cm MAXSTA-J y f J

+ I ® • - . D ; l I ;Cons (by Thm. 3.2.10 and Lemma 7.1)

1' r r r \ i'
® • D; ® ; ® ; ® \Cons + -<D; ® \Cons

CNi, MAXSTA-J >- f J Cm

(by Thms. 2.3.19, 2.3.21, and 2.3.8)

l' l' r r \ i '
® • D; ® ; ® ; ®] ;Cons + - iD; ® ;Cons

Cml MAXSTA-J ± f J C M ,
(by Thm. 3.2.20 and ~ = ;<)

I V V \ 1'
= D ; ® • ® ;Cons + ->D; ® ; Cons

V l ; l ' L o MAXSTA-J-<\f) Cm

(by Def. Cm, and Thm. 3.2.10)

1' 1'
= D; ® ;Cons + -.£>; ® ; Cons (by Thm. 2.3.22)

M A X S 7 V l ; / ; ^ ; / ; l ' L o C w ,

1' 1'
= D; ® \Cons + ->£); ® ; Cons (by Asse)

MAXSTAJ-<;C0;VLo C M

file:///Cons
file:///Cons
file:///Cons
file:///Cons

A Dk.C Algorithm for MAXSTA 199

r r
= £>; ® ;Cons + -iD; ® ;Cons (by Def. Co)

MAXSTA;f;<;V0;l;VLo CN«
V V

= D; <g> \Cons + -•£); <gi ;Cons.
MAXSTA;Dom(f;^;V0);CNil Cm

(by Thm. 2.3.14 and Def. Cm)

Thus,

(l'(g)Cjvi;) ;Cons • A3 =

V V
D; O ;Cons + -iD; ® ;Cons . (7.70)

M4XSr .4 ;£>om(/ ; ^ ; ro) ;C m (CM ,

Recalling the previous definitions and derivations,

Hd I V V g;h \
A=VL^i; V ; ® ;Cons • ® ; C 2 ; <g> J ^ d d ; / (by (7.64))

T/ \̂ Cm STA;d f;y J

= VLyi;(HdVTl);A1 (by Def. Ai)

Hd I V V g;h ^ 0'
= VLyi; V ; <g> ;Cons • <g> ; C 2 ; ® ;>4dd;/ • <g> ;Cons

Tl \ Cm STA-C-, f;^ 1

r g;h v \
® | C 2 ; ® ;Add;f • g> ; Cons (by (7.66))

S7Vl;Ci /;>- 1 J
Hd / V

= VLyi; V ; (<g> ;Cons A 2 -A 3 | (by Def. A2 and A3)

r/ V cm
Hd I V

= VL>X; V ; ® ; C o n s - A 3 | (by (7.67))
Tl \ CNil

Hd I V
= VLyi; V ; D ; ® ;Cons

Tl \ MAXSTA; Dom (/ ; •< ; 1' o) ; C m

+ - .D; <g> ; Cons | (by (7.70))
CNU

file:///Cons

200 A Calculus for Program Construction

Hd I V
= l ' i j - i ; V ; D ; ® ; Cons

Tl \ MAXSTA;Dom (f; X ; 1'0) ; CWii

+ - .D; ® -Cons . (by 2.3.14 and Def. CAKJ)
MAXSTA;CNil)

Then,

Hd I V
A = VLyi; V ; I D; <g> ;Cons

Tl \ MAXSTA;Dom(f;±;V0);Cm

V \
+ ->D; «) ;Cons . (7.71)

MAXSTA ;Cj«, /

In order to continue with the derivation of a divide-and-conquer algo­
rithm for the relation MAXSTA, proceeding along the lines of the derivation
for A, we deduce:

Hd V
B = VLyi; V ;D; ® ;Cons . (7.72)

Tl MAXSTA; Dom (f;y;V0)

Let us define the following partial identities:

D i : = r > o m (/ ; ^ ; l ' o) ,

D2:=Dom(f;h;V0).

Joining the results for A (Eq. (7.71)) and B (Eq. (7.72)) to the derivation
of the base case (Eq. (7.63)), we obtain

MAXSTA = VLi +

Hd I V V \
1 ' L » I ; V ;D; I ® + <8> J ;Cons

Tl \ MAXSTMD^Cm MAXSTA; D2 J

Hd V V
+ VLyi; V ;->D; <g> ; <g> ;Cons,

Tl MAXSTA CNU

A DhC Algorithm for MAXSTA 201

which, by Ax. 2 and Thm. 3.2.10, yields the equation

MAXSTA =

Ed V / 1' 1'
l'z,i + 1'L>-I; V \D\ ® ; <g> + ® | ;Cons

Tl MAXSTA V Di;Cjvtf £>2

Ed V V
+ VLyi; V ;-.£>; ® ; ® ; Cons. (7.73)

TJ MA-XSTA CMJ

Equation (7.73) provides a recursive algorithm for computing the re­
lation MAXSTA, but according to our definitions it does not follow the
pattern of divide-and-conquer algorithms. Recalling the definition of the
filter D, it is easy to prove that

(1) D; (V®MAXSTA) = {V®MAXSTA) ;C2,

(2) -.£>; (V®MAXSTA) = {V®MAXSTA) ;^C 2 .

The proofs are as follows.

r r
D; ® = D; ® (by (7.41))

MAXSTA STA;Cx • MAXSTA

(V V \
= D; ® • ® (by Thm. 3.2.8)

\ STA\Ci MAXSTA)
V V
® • D; ® (by Thm. 2.3.22)

STA;Cl MAXSTA

V V
= ® • ® ;C2 (by Ass5)

STA;d MAXSTA

V V
;C2 (by Thm. 2.3.22)

STA;d MAXSTA

202 A Calculus for Program Construction

V
® ;C2 (by Thm. 3.2.8)

STA;Ci • MAXSTA

V
® ;C2. (by (7.41))

MAXSTA

Regarding property (2), we will use the following property from Boolean
algebra. If a-b = 0, a+b = c, a-d = 0, and a+d = c, then b = d. Notice
now that using Ax. 2,

r r r
D; ® + ->D; ® = ®

MAXSTA MAXSTA MAXSTA

Also,

r r
D; ® + ® ;-iC2

MAXSTA MAXSTA

V V
® ;C2 + (2) ; - > C 2 (by (1))

MAJf5T4 MAXSTA

V
O ; (C2+-C 2) (by Ax. 2)

AL4XST,4

r
(8» (by Thm. 7.1.1 and Ax. 5)

MAXSTA

It is also clear that

r r
D ; <g) • ->D; <S> = 0

MAXSTA MAXSTA

Comparison with Previous Work 203

Finally,

1' 1'
D; ® • <g> ; - > C 2

MAXSTA MAXSTA

V V
® ;C2 • ® ; - C 2 (by (l))

M4XST.A MAXSTA

= 0.

Using then the previously mentioned property about Boolean algebras
we deduce that (1) holds. Then, using (1) and (2) in (7.73),

MAXSTA =

V Hd
VLx + VL»i; V ; g)

Tl MAXSTA

If we define

JoinMAxsTA •= C2;

1' 1'
C2; I ® + ® I ;Cons

•Di; CJWI D 2

1'
+ -nC2; ® ;Cons . (7.74)

CAM

r r \ r
® + ® ;Cons+- .C 2 ; ® ;Cons,

then, by (7.74), the predicate

DkC {MAXSTA, VLi, l ' L w ; (#tfV 7Y), 1', MAXSTA, JOITIMAXSTA)

holds.

7.8 Comparison with Previous Work

The notion of generic algorithm is not new. Already in 1985 the wide
spectrum language CIP-L [F. L. Bauer et al. (1985)] allowed us to work
with program schemes. Also, program design strategies were incorporated
as transformation rules. The advantage of our calculus is its completeness,

204 A Calculus for Program Construction

for there is no theorem showing that given any two program schemes Pi
and Pi with the same semantics, it is possible to carry on the derivation

Pi

Pi

in CIP-L.
In [B. Moller (1991); M. Russling (1996)a; M. Russling (1996)b] a frame­

work for program construction based on an algebra of formal languages is
presented. In [M. Russling (1996)b] these algebras are used for deriving
generic algorithms for the treatment of graphs. The operators from the
algebras are defined in set-theory using variables over 'words' besides vari­
ables over languages. From these set-theoretical definitions, the author
derives some valid properties only involving variables that range over for­
mal languages, but, opposed to the fork algebra case, there is no proof of
whether these properties axiomatize the algebras or not. Also, variables
ranging over words are used in proofs (something that is avoided in fork
algebras by using only variables over relations), and reasoning in set-theory
is carried on.

In [D. Smith (1985); D. Smith (1987)] some strategies are presented
which aim to help in the design of divide-and-conquer algorithms. A pro­
gram scheme describing an arbitrary divide-and-conquer algorithm is given,
and the strategies are used for finding the adequate program pieces. No­
tice that since no complete calculus is given, then the author reasons in
first-order logic using variables over individuals, something avoided in fork
algebras. Also, the lack of such calculus makes the author find some of
the missing parts using his intuition. This can be seen for example in the
derivation of the MIN algorithm in [D. Smith (1985), pp. 45-46], where
the Split operator and the subproblems Id and MIN are fixed by hand, and
the Join part is derived. In our case, once the generator is fixed (something
we believe equivalent to choosing the Split operator), the subproblems Id
and MIN are found by unfolding/folding in fork algebras, and the Join is
obtained in the process of satisfying the predicate DSzC.

In [R. Bird et al. (1997)] an approach similar to ours is presented. Re­
lations are not introduced as elements in models of logical theories, but
rather as arrows in categories known as allegories [P. Freyd et al. (1990)].
While in our framework the discussion in Section 7.4 shows that first-oder
formulas over abstract relations can always be interpreted as formulas on

Comparison with Previous Work 205

binary relations, in [R. Bird et al. (1997), p. 95] a weaker result is used that
guarantees this 'completeness' only for Horn sentences. Horn sentences are
formulas of the form eo A • • • A en-\ => en, where eo , . . . , en are identities
between relational designations. Horn sentences are adequate when per­
forming equational reasoning, but fall short in describing design strategies.
Something that also distinguishes both frameworks is the background re­
quired for mastering the process of program construction. While in the
categorical framework a fairly non-trivial amount of category theory is re­
quired, in the fork algebraic framework only first-order logic, equational
reasoning and basic set-theory for understanding binary relations are re­
quired. Of course, this categorical background also has clear advantages,
such as the use of functors in the description of problems, allowing us to
derive type-generic algorithms in a very efficient way.

This page is intentionally left blank

Bibliography

Aho, A. V., Hopcroft, J. E. and Ullman, J. D., Data Structures and Algorithms
(1983), (Addison-Wesley, Reading, MA).

Andreka, H. and Nemeti, I., General algebraic logic: A perspective on 'What is
logic', in D. M. Gabbay (Ed.), What is a Logical System?, Vol. 4 of Studies
in Logic and Computation, pp. 393-443, (Oxford, Clarendon Press, 1994).

Andreka, H., Nemeti, I. and Sain, I., Applying algebraic logic to logic, in Proceed­
ings of the Third International Conference on Algebraic Methodology and
Software Technology (AMAST'93), University of Twente, Enschede, The
Netherlands, 21-25 June 1993, (Springer-Verlag), pp. 5-26.

Andreka, H. and Sain, I., Connections between algebraic logic and initial algebra
semantics of CF languages, in B. Domolki and T. Gergely (Eds.), Mathe­
matical Logic in Computer Science (Proc. Coll. Salgotarjdn, 1978), Vol. 26
of Colloq. Math. Soc. J. Bolyai, Amsterdam, 1981, pp. 25-83.

Backhouse, R. C , de Bruin P. J., Malcolm, G., Voermans, E. and van der
Woude, J. C. S. P., Relational Catamorphisms, in Proceedings of the IPIP
TC2/WG2.1 Working Conference on Constructing Programs from Specifi­
cations, (Elsevier Science Publishers B. V.), pp. 287-318, 1991.

Backhouse, R. C. and Hoogendijk, P., Elements of a Relational Theory of
Datatypes, Formal Program Development, IFIP TC2/WG 2.1 State-of-the-
Art Report, LNCS 755, (Springer-Verlag), pp. 7-42, 1993.

Backus, J., Can Programming be Liberated from the Von Neumann Style? A
Functional Style and its Algebra of Programs, Communications of the ACM
vol. 21 (1978), pp. 613-641.

Bauer, F. L., Berghammer, R., Broy, M., Dosch, W., Geiselbrechtinger, F.,
Gnatz, R., Hangel, E., Hesse, W., Krieg-Briickner, B., Laut, A., Matzner,
T., Moller, B., Nickl, F., Partsch, H., Pepper, P., Samelson, K., Wirsing,
M. and Wossner, H., The Wide Spectrum Language CIP-L (1985), LNCS
183, Springer-Verlag.

Baum, G. A., Frias, M. F., Haeberer, A. M. and Martinez Lopez, P. E., From

207

208 Bibliography

Specifications to Programs: A Fork-algebraic Approach to Bridge the Gap,
in Proceedings of MFCS'96, LNCS 1113, (Springer-Verlag, 1996, pp. 180-
191).

Berghammer, R., Relational Specifications of Data Types and Programs, Tech­
nical Report 9109, Fakultat fur Informatik, Universitat der Bundeswehr
Miinchen, 1991.

Berghammer, R., Gritzner T.F., and Schmidt, G., Prototyping Relational Specifi­
cations Using Higher-Order Objects, in Heering, J., Meinke, K., Moller, B.
and Nipkow, T. (Eds.), Higher-Order Algebra, Logic and Term Rewriting,
1st. International Workshop, HOA'93, LNCS 816, (Springer-Verlag, 1993),
pp. 56-75.

Berghammer, R. and Schmidt, G., Relational Specifications, in C. Rauszer (Ed.),
Algebraic Logic, Banach Center Publications vol. 28, Polish Academy of
Sciences, 1993, pp. 167-190.

Berghammer, R. and von Karger, B., Algorithms from Relational Specifications,
Chapter 9 of [C. Brink et al. (1997)].

Bird, R., Transformational Programming and the Paragraph Problem, Science of
Computer Programming vol. 6, No. 2 (1986), (Elsevier Science Publishers
B. V.), pp. 159-189.

Bird, R. and de Moor O., List Partitions, Formal Aspects of Computing vol. 5,
No. 1 (1993), (Springer-Verlag), pp. 67-78.

Bird, R. and de Moor O., Algebra of Programming (1997), (Prentice Hall).
Birkhoff, G., On the Structure of Abstract Algebras, Proceedings of the Cambridge

Phylosophical Society, vol. 31 (1935), pp. 433-454.
Birkhoff, G., Subdirect Unions in Universal Algebra, Bulletin of the American

Mathematical Society, vol. 50 (1944), pp. 764-768.
Blackburn, P., de Rijke, M. and Venema, Y., Modal Logic, Cambridge Tracts in

Theoretical Computer Science, vol. 53, 2001.
Blok, W., and Pigozzi, D., Algebraizable Logics, Memoirs of the American Math­

ematical Society, vol. 77, 1989.
Booch, G., Jacobson, I. and Rumbaugh, J., The Unified Modeling Language User

Guide, The Addison-Wesley Object Technology Series, 1998.
Brink, C , Kahl, W. and Schmidt, G. (Eds.), Relational Methods in Computer

Science (1997), (Springer Wien-New York).
Burstall, R. M. and Darlington, J., A Transformation System for Developing

Recursive Programs, Journal of the ACM vol. 24, No. 1 (1977), pp. 44-67.
Buszkowski, W. and Orlowska, E., Indiscernibility-Based Formalisation of De­

pendencies in Information Systems. In Orlowska, E. (Ed.), Incomplete In­
formation: Rough set analysis, (Physica Verlag, 1997).

Chin, L. H. and Tarski, A., Distributive and Modular Laws in the Arithmetic
of Relation Algebras, University of California Publications in Mathematics
(1951), (University of California), pp. 341-384.

Darlington, J., Applications of Program Transformation to Program Synthesis,
in Proceedings of the International Symposium on Proving and Improving

Bibliography 209

Programs, Arc-et-Senans, France, July 1-3, 1975, pp. 133-144.
De Morgan, A., On the Syllogism, and Other Logical Writings (1966), (Yale Uni­

versity Press).
Demri, S., Orlowska, E. and Rewitzky, I., Towards reasoning about Hoare re­

lations, Annals of Mathematics and Artificial Intelligence vol. 12 (1994),
pp. 265-289.

Demri, S. and Orlowska, E., Logical Analysis of Demonic Nondeterministic Pro­
grams, Theoretical Computer Science vol. 166 (1-2) (1996).

Doornbos, H., van Gasteren, N. and Backhouse, R. C., Programs and Datatypes,
Chapter 10 of [C. Brink et al. (1997)].

Enderton, H. E., A Mathematical Introduction to Logic (1972), Academic Press,
Inc.

Fitting, M., Intuitionistic logic, model theory and forcing (1969), North-Holland,
Amsterdam.

Preyd, P. J. and Scedrov, A., Categories, Allegories (1990), Mathematical Library,
vol. 39, North-Holland.

Prias, M. F. and Aguayo, N. G., Natural Specifications vs. Abstract Specifications.
A Relational Approach, in Proceedings of SOFSEM '94, Milovy, Czech Re­
public, pp. 17-22, November 1994.

Prias, M. F., Aguayo N. G. and Novak B., Development of Graph Algorithms
with Fork Algebras, in Proceedings of the XIX Latinamerican Conference
on Informatics, 1993, pp. 529-554.

Frias, M. F., Baum, G. A. and Haeberer, A. M., Adding Design Strategies to
Fork Algebras, in Proceedings of Perspectives of System Informatics, LNCS
1181, (Springer-Verlag, 1996), pp. 214-226.

Frias M.F., Baum G.A. and Haeberer A.M., Fork Algebras in Algebra, Logic and
Computer Science, Fundamenta Informaticae vol. 32 (1997), pp. 1-25.

Frias M.F., Baum G.A. and Haeberer A.M., Representability and Program Con­
struction within Fork Algebras, Logic Journal of the IGPL, Vol. 6, No. 2,
(Oxford University Press, 1998), pp. 229-259.

Frias, M. F., Baum, G. A., Haeberer, A. M. and Veloso, P. A. S., Fork Algebras
are Representable, Bulletin of the Section of Logic vol. 24, No. 2 (1995),
University of Lodz, pp. 64-75.

Prias, M. F., Haeberer, A. M. and Veloso, P. A. S., A Finite Axiomatization for
Fork Algebras, Logic Journal of the IGPL vol. 5, No. 3, (Oxford University
Press, 1997) pp. 311-319.

Frias M.F. and Orlowska E., Equational Reasoning in Non Classical Logics, Jour­
nal of Applied Non Classical Logics, Vol. 8, No. 1-2 (1998), pp. 27-66.

Frias, M. F. and Orlowska E., A Proof System for Fork Algebras and its Appli­
cations to Reasoning in Logics Based on Intuitionism, Logique et Analyse
vol. 150-151-152 (1997), pp. 239-284.

Gries D., The Science of Programming (1981), Texts and Monographs in Com­
puter Science, (Springer-Verlag).

Gries, D., Equational logic as a tool, LNCS 936, (Springer-Verlag, 1995), pp. 1-17.

210 Bibliography

Gries, D. and Schneider, F. B., A Logical Approach to Discrete Mathematics,
(Springer- Verlag, 1993).

Gyuris, V., A Short Proof for Representability of Fork Algebras, Logic Journal of
the IGPL vol. 3, No. 5 (1995), (Oxford University Press), pp. 791-796.

Haeberer, A. M., Baum, G. A. and Schmidt G., Dealing with Non-Constructive
Specifications Involving Quantifiers, MCC 4/93, Departamento de In­
formatics, PUC-Rio, May 1993.

Haeberer, A. M., Baum, G. A. and Schmidt G., On the Smooth Calculation of
Relational Recursive Expressions out of First-Order Non-Constructive Spec­
ifications Involving Quantifiers, in Proceedings of the International Confer­
ence on Formal Methods in Programming and Their Applications, LNCS
735, (Springer-Verlag, 1993), pp. 281-298.

Haeberer, A. M. and Veloso, P. A. S., Partial Relations for Program Derivation:
Adequacy, Inevitability and Expressiveness, in Constructing Programs from
Specifications - Proceedings of the IFIP TC2 Working Conference on Con­
structing Programs from Specifications, (North-Holland, 1991), pp. 319-
371.

Halmos, P., Algebraic Logic (1962), Chelsea.
Barwise, J., (Ed.), Handbook of Mathematical Logic (1977), North-Holland.
Harel, D., Dynamic Logic, Handbook of Philosophical Logic, Vol. II, (D. Reidel

Publishing Company, 1984), pp. 497-604.
Harel, D., Kozen, D. and Tiuryn, J., Dynamic Logic (2000), (MIT Press).
Henkin, L., Monk, D. and Tarski, A., Cylindric Algebras, Part I (1971), Studies

in Logic and the Foundations of Mathematics, vol. 64, (North-Holland).
Henkin, L., Monk, D. and Tarski, A., Cylindric Algebras, Part II (1985), Studies

in Logic and the Foundations of Mathematics, vol. 115, (North-Holland).
Herment, M. and Orlowska, E., Handling information logics in a graphical proof

editor, Computational Intelligence vol. 11, No. 2, (1995), pp. 297-322.
Jeuring, J. T., The Derivation of On-Line Algorithms with an Application to

Finding Palindromes, Algorithmica vol. 11, No. 2 (1994), pp. 146-184.
Johansson, I., Der minimalkalkuel, ein reduzierter intuitionistischer Formalismus,

Compositio Mathematica vol. 4 (1936), pp. 119-136.
Jonsson, B., and Tarski, A., Boolean Algebras with Operators, PART II, American

Journal of Mathematics vol. 74 (1952), pp. 127-162.
Kripke, S., Semantical analysis of modal logic I, Zeitschrift fur Mathematische

Logik und Grundlagen der Mathematik vol. 9, (1963), pp. 67-96.
Kripke, S., Semantical analysis of intuitionistic logic. In: Crossley, J. N. and

Dummett, M. A. (Eds.) Formal Systems and Recursive Functions, North
Holland, 1965.

Lowenheim, L., Uber Moglichkeiten im Relativkalkul, Mathematische Annalen
vol. 76 (1915), pp. 447-470.

Lyndon, R., The Representation of Relational Algebras, Annals of Mathematics
(Series 2) vol. 51 (1950), pp. 707-729.

Lyndon, R., The Representation of Relational Algebras, Part II, Annals of Math-

Bibliography 211

ematics (Series 2) vol. 63 (1956), pp. 294-307.
MacCaull, W., Relational Proof System for Linear and Other Substructural Log­

ics, Logic Journal of the IGPL vol. 5, No. 5 (1997), pp. 673-697.
Maddux, R. D., Some Sufficient Conditions for the Representability of Relation

Algebras, Algebra Universalis vol. 8 (1978), pp. 162-172.
Maddux, R. D., A Sequent Calculus for Relation Algebras, Annals of Pure and

Applied Logic vol. 25 (1983), pp. 73-101.
Maddux, R. D., Introductory Course on Relation Algebras, Finite-Dimensional

Cylindric Algebras and their Interconnections, Colloquia Mathematica So-
cietatis Janos Bolyai vol. 54, Algebraic Logic, Budapest, Hungary, 1988,
North-Holland, pp. 361-392.

Maddux, R. D., Finitary Algebraic Logic, Zeitschr. f. math. Logik und Grundlagen
d. Math. vol. 35 (1989), pp. 321-332.

Maddux, R. D., The Origin of Relation Algebras in the Development and Ax-
iomatization of the Calculus of Relations, Studia Logica vol. L 3/4 (1991),
pp. 421-455.

McKenzie, R. N. W., The Representation of Integral Relation Algebras, Michigan
Mathematical Journal vol. 17 (1970), pp. 279-287.

Meertens, L., Algorithmics - Toward Programming as a Mathematical Activity, in
De Bakker, J. W., Hazewinkel, M. and Lenstra, J. K., (Eds.), Mathematics
and Computer Science, CWI Monographs 1, North-Holland, pp. 3-42, 1987.

Mikulas, S., Sain, I. and Simon, A., Complexity of the Equational Theory of
Relational Algebras with Projection Elements. Bulletin of the Section of
Logic vol. 21, No. 3 (1992), University of Lodz, pp. 103-111.

Moller, B., Relations as a Program Development Calculus, in Constructing Pro­
grams from Specifications - Proceedings of the IFIP TC2 Working Confer­
ence on Constructing Programs from Specifications, (North-Holland, 1991),
pp. 373-397.

Moller, B., Derivation of Graph and Pointer Algorithms, Formal Program Devel­
opment, IFIP TC2/WG 2.1 State-of-the-Art Report, LNCS 755, (Springer-
Verlag, 1993), pp. 123-160.

Monk, J. D., On Representable Relation Algebras, Michigan Mathematical Jour­
nal, vol. 11, 1964, pp. 207-210.

Nemeti, I., Algebraizations of quantifier logics, Studia Logica vol. 50 (1991),
pp. 485-569.

Orlowska, E., Relational interpretation of modal logics. In: Andreka, H., Monk, D.
and Nemeti, I. (Eds.), Algebraic Logic. Colloquia Mathematica Societatis
Janos Bolyai vol. 54, (North-Holland, 1988), pp. 443-471.

Orlowska, E., Relational proof system for relevant logics, Journal of Symbolic
Logic vol. 57 (1992), pp. 1425-1440.

Orlowska, E., Relational semantics for nonclassical logics: Formulas are rela­
tions. In: Wolenski, J. (Ed.), Philosophical Logic in Poland, (Kluwer, 1994),
pp. 167-186.

Orlowska, E., Relational proof systems for modal logics. In: Wansing, H. (Ed.),

212 Bibliography

Proof Theory of Modal Logics, (Kluwer, 1996), pp. 55-77.
Partsch, H. A., Specification and Transformation of Programs. A Formal Ap­

proach to Software Development (1990), Texts and Monographs in Com­
puter Science, (Springer-Verlag).

Peirce, Ch. S., Collected Papers (1933), (Harvard University Press, Cambridge).
Rasiowa, H. and Sikorski, R., The Mathematics of Metamathematics (1963), (Pol­

ish Science Publishers, Warsaw).
Russling, M., Deriving a Class of Layer-Oriented Graph Algorithms, Science of

Computer Programming vol. 26 (1996), Elsevier Science Publishers B. V.,
pp. 117-132.

Russling, M., Deriving General Schemes for Classes of Graph Algorithms, AMNS
13, Augsburg, 1996.

Sain, I. and Nemeti, I., Fork Algebras in Usual as well as in Non-well-founded Set
Theories, Studia Logica Library (a special volume dedicated to the memory
of H.Rasiowa), to appear; extended abstract appeared in Bulletin of the
Section of Logic, University of Lodz, Vol. 24, N. 3-4, 1995, pp. 158-168,
pp. 182-192.

Schmidt, G. and Strohlein, T., Relations and Graphs (1993), EATCS Monographs
in Theoretical Computer Science, (Springer-Verlag).

Schroder, E. P. W. K., Vorlesungen iiber die Algebra der Logik (exacte Logik)
(1895) vol. 3, "Algebra und Logik der Relative", part I, Leipzig.

Smith, D. R., Top-Down Synthesis of Divide-and-Conquer Algorithms, Artificial
Intelligence vol. 27 (1985), pp. 43-96.

Smith, D. R., Applications of a Strategy for Designing Divide-and-Conquer Algo­
rithms, Science of Computer Programming vol. 8 (1987), Elsevier Science
Publishers B. V., pp. 213-229.

Tarski, A., On the Calculus of Relations, Journal of Symbolic Logic vol. 6 (1941),
pp. 73-89.

Tarski, A., Some metalogical results concerning the calculus of relations, Journal
of Symbolic Logic vol. 18 (1953), pp. 188-189.

Tarski, A., Contributions to the Theory of Models, III, Koninklijkle Nederlandsle
Akademie van Wetenschappen. Proceedings. Series A. Mathematical Sci­
ences (Indagationes Mathematicae, 18) vol. 58 (1955), pp. 56-64.

Tarski, A. and Givant, S., A Formalization of Set Theory without Variables
(1987), American Mathematical Society Colloquium Publications, vol. 41,
American Mathematical Society.

Veloso, P. A. S. and Haeberer, A. M., A Finitary Relational Algebra for Classical
First-Order Logic, Bulletin of the Section of Logic vol. 20, No. 2 (1991),
University of Lodz, pp. 52-62.

Veloso, P. A. S. and Haeberer, A. M., On Fork Algebras and Program Derivation,
MCC 32/93, Departamento de Informatica, PUC-Rio, December 1993.

Veloso, P. A. S., Haeberer, A. M. and Baum G. A., On Formal Program Con­
struction within an Extended Calculus for Binary Relations, MCC 19/92,
Departamento de Informatica, PUC-Rio, May 1992.

Bibliography 213

Veloso, P. A. S., Haeberer, A. M., and Prias, M. F., Fork Algebras as Algebras of Logic,

in Abstracts of the Logic Colloquium '94, July, 1994, p. 127. Also in Bulletin of

Symbolic Logic vol. 1, No. 2 (1995), pp. 265-266.

This page is intentionally left blank

Index

accessibility relation, 78
algebra of binary relations, 6, 21

base of, 6
full, 6
square, 6

arity
arity function, 50
in FOLE, 52
of a binary relation, 52
of a relation symbol, 52

input arity, 52
output arity, 52

Birkhoff, G., 42
Blok, W., 52
Boole, G., 5
Buszkowski, W., 73

calculus of fork relations, 51
extended, 57
square model for, 64

calculus of relations, 8
axioms, 8
formulas, 8

case analysis, 152
closure fork logic, 93
constant relation, 11
converse, 7
cross, 23
cylindrification, 59

De Morgan, A., 5
Dedekind formula, 10
Demri, S., 73
design strategy, 152
diversity relation, 10
divide-and-conquer, 153
domain

abstract, 12
proper, 12

elem. theory of binary relations, 7
atomic formulas, 7
axioms, 7
compound formulas, 7

elem. theory of fork relations, 49
adequate structure, 52
atomic formulas, 50
compound formulas, 50
model, 53
satisfiability of a formula, 53

embeddable, 12
equipollence, 11

filter, 141
Fitting, M., 126
fork algebra, 20

abstract, 24
atomic, 25
closure, 92
proper, 21, 22

215

216 Index

full, 22
square, 22
star, 21

representable, 38
simple, 25
with urelements, 25

fork logic FL, 76
alphabet, 76
fork model, 77

truth, 77
truth in a class, 77

logical symbols, 76
provability, 77
validity, 77

fork logic FL', 102
adequate structure, 102
fork language, 102
fork model, 102
formulas, 102
fundamental sequence, 106
indecomposable formula, 106
indecomposable sequence, 106
order of a relational term, 109
satisfiability, 103
truth in model, 103
validity, 103
validity of sequence, 103
valuation of variables, 103

fork model
atomic, 77
closure, 93
of FL', 102
proper, 77
simple, 77

frame, 78
Prias, M.F., 37, 73
functional relation, 11

generalized divide-and-conquer, 155
generator, 150
Givant, S., 11, 38
Gyuris, V., 37

Haeberer, A.M., 37

heredity condition, 116
Herment, M., 73

independence, 43
individual term, 49

arity of, 50
value of, 54

individual variable, 7
valuation of, 53

injective relation, 11
7n£-fundamental sequence of

formulas, 121
intuitionistic logic, 115

alphabet, 115
formulas, 115
minimal, 126
models, 116
satisfiability, 116
truth, 116
validity, 116

Jonsson, B., 42
Johansson, I., 126

Korselt, A., 11
Kripke model, 78

truth in, 80

left-ideal relation, 11
Lyndon, R., 10, 11

Maddux, R., 37, 38
McKenzie, R., 11
minimum common ancestor, 168
minimum element in a list, 167
modal logic, 78

validity in, 80

Orlowska, E., 73

pairing relation algebra, 72
pairing relation algebras, 38
partial identity, 141
Peirce, C. S., 5

Index 217

Pigozzi, D., 52
plateau, 187
possible worlds, 78
power set, 12
projections, 25
proof tree, 106

./-saturated, 128
/nt-saturated, 122
closed branch, 106
saturated, 108

proper fork, 21
propositional dynamic logic, 91

calculus, 92
model, 91

provable in FLC, 106

quasi-projections, 38
quasi-projective relation algebra, 72

range
abstract, 12
proper, 12

recomposition, 153
reduct, 21
relation algebra, 9

simple, 10
relation designations, 7, 50
relation variables, 7
relational implication, 143

abstract definition, 144
set-theoretical definition, 144

relational world, 81
satisfaction at, 81

relative product, 7
representability, 37
right residual, 143
right-ideal relation, 11

Schroder equivalences, 10
Schroder, E., 5
simple algebra, 8
Smith, D., 153
sublist of maximum sum, 184
symmetric relation, 11

Tarski, A., 7, 8, 10, 11, 37, 38, 42, 49
transitive relation, 11
trivialization, 152

unfolding and folding, 157
urelement, 23

abstract, 76

variety, 10, 11
finitely based, 10

Veloso, P.A.S., 37, 46

Advances in Logic - Vol. 2

Fork Algebras in Algebra,

Logic and Computer Science

Fork algebras are a formalism based on the

relational calculus, with interesting algebraic and

metalogical properties.Their representability is

especially appealing in computer science, since it

allows a closer relationship between their language

and models.This book gives a careful account of

the results and presents some applications of

Fork algebras in computer science, particularly

in system specification and program construction.

Many applications of Fork algebras in formal

methods are foreseen, and the book covers all the

essentials in order to provide the reader with a

better understanding.

World Scientific
www. worldscientific.com

4899 he

ISBN 981-02-4876-8

http://worldscientific.com

	Contents���������������
	Preface��������������
	Chapter 1 Introduction and Motivations���
	1.1 Software Specification Binary Relations and Fork���

	Chapter 2 Algebras of Binary Relations and Relation Algebras���
	2.1 History and Definitions����������������������������������
	2.2 Arithmetical Properties����������������������������������

	Chapter 3 Proper and Abstract Fork Algebras��
	3.1 On the Origin of Fork Algebras���
	3.2 Definition of the Classes������������������������������������
	3.3 Arithmetical Properties����������������������������������

	Chapter 4 Representability and Independence��
	4.1 Representability of Abstract Fork Algebras���
	4.2 Independence of the Axiomatization of Fork���

	Chapter 5 Interpretability of Classical First-Order Logic��
	5.1 Basic Definitions����������������������������
	5.2 Interpreting FOLE����������������������������

	Chapter 6 Algebraization of Non-Classical Logics���
	6.1 Basic Definitions and Properties���
	6.2 The Fork Logic FL����������������������������
	6.3 Modal Logics�����������������������
	6.4 Representation of Constraints in FL��
	6.5 Interpretability of Modal Logics in FL���
	6.6 A Proof Theoretical Approach���������������������������������������
	6.7 Interpretability of Propositional Dynamic Logic in FL��
	6.8 The Fork Logic FL'�����������������������������
	6.8.1 Syntax of FL'��������������������������
	6.8.2 Semantics of FL'�����������������������������

	6.9 A Rasiowa-Sikorski Calculus for FL'��
	6.9.1 The Deduction System for FL'���
	6.9.2 Soundness and Completeness of the Calculus FLC���
	6.9.3 Examples of Proofs in the Calculus FLC���

	6.10 A Relational Proof System for Intuitionistic Logic��
	6.10.1 Intuitionistic Logic����������������������������������
	6.10.2 Interpretability of Intuitionistic Logic in FL'���
	6.10.3 A Fork Logic Calculus for Intuitionistic Logic��
	6.10.3.1 Example�����������������������

	6.11 A Relational Proof System for Minimal Intuitionistic Logic��
	6.12 Relational Reasoning in Intermediate Logics���
	6.12.1 Method 1����������������������
	6.12.2 Method 2����������������������
	6.12.3 Method 3����������������������

	Chapter 7 A Calculus for Program Construction��
	7.1 Introduction�����������������������
	7.2 Filters and Sets���������������������������
	7.3 The Relational Implication�������������������������������������
	7.4 Representability and Expressiveness in Program Construction��
	7.5 A Methodology for Program Construction���
	7.6 Examples�������������������
	7.6.1 First Example��������������������������
	7.6.1.1 Finding the Minimum Element in a List��
	7.6.1.2 Finding the Minimum Common Ancestor��

	7.6.2 Second Example���������������������������
	7.6.2.1 Finding the Contiguous Sublists of Maximum Sum���
	7.6.2.2 Finding the Longest Plateau��

	7.7 A D&C Algorithm for MAXSTA�������������������������������������
	7.8 Comparison with Previous Work��

	Bibliography�������������������
	Index������������

